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Abstract 

An analytical model based on quasi-steady assumption of wind 

loading is formulated to assess the galloping of slender towers 

that are nonlinearly coupled in two directions about the principal 

axes. To illustrate the effectiveness of this model, it is used to 

evaluate the responses of a full-scale slender tower subjected to 

excitation from winds simulated using the spectral representation 

method. Some of the numerical results are compared with field 

observations of wind-induced galloping oscillations of this tower. 

The characteristics of the oscillations, including the root mean 

square (RMS) amplitudes and the kurtosis, and the dependence of 

these characteristics on the mean wind speed and the turbulence 

are presented. 

Introduction  

Slender towers are commonly used as supports for objects such 

as luminaires and antenna of various kinds. This type of structure 

can be susceptible to wind excitation because they are flexible 

and often possess low levels of damping. In some cases, wind-

induced oscillation has become excessive and resulted in failures 

of the towers [e.g., 1, 2]. While a number of excitation 

mechanisms, including galloping, vortex shedding and buffeting, 

can all lead to significant vibrations of the towers, galloping has 

often been identified as the most problematic and responsible for 

the failures due to the large amplitudes that this type of vibration 

can reach [1, 3]. This is primarily because the shapes of the 

cross-sections of some towers (such as square or rectangular 

cross-sections) lead to the generation of self-excited forces in the 

form of aerodynamic damping when wind approaches from 

certain directions. In addition, towers with cross-sections that do 

not tend to gallop, such as circular cross-sections, can also be 

susceptible to galloping in certain weather conditions, as their 

small cross-sections can be significantly changed by external 

matters such as snow or ice and become galloping prone. 

One type of galloping oscillation of slender towers is of 

particular interest. It differs from the classical across-wind 

galloping in that it involves coupling between translations in 

directions about the two principal axes of the towers. Due to the 

coupling, methods for the assessment of the galloping onset 

condition, including those based on the Den Hartog criterion [4], 

which only considers the mean wind speed, and the models that 

also consider the turbulence [5], and models for predicting the 

amplitude of the across-wind vibration, such as those that 

represent the self-excited forces by polynomials (e.g., [6, 7]) or 

Fourier series [8] of the oscillation velocity, are no longer 

applicable. A number of studies have proposed models for 

coupled galloping of slender structures. Jones first formulated an 

eigenvalue problem that can be solved to yield a criterion for the 

onset of galloping involving coupling between the along-wind 

and across-wind degrees of freedom [9]. However, this 

formulation is restrictive because it requires the interacting 

modes to be of an identical frequency and the wind to be along 

one of the principal axes. A number of subsequent studies 

attempted to address these limitations in Jones’ formulation. 

Liang [10] relaxed the restriction on the frequencies of the modes 

that participate in the coupling as well as that on the wind 

direction. However, this study resulted in an erroneous 

conclusion that coupled translational galloping occurs only when 

the frequencies of the two modes about the principal axes are the 

same because the solution assumed the vibration in these two 

modes to be in phase. The problem of coupled galloping was also 

addressed as part of an effort to model a perceived type of wind-

induced dry stay cable vibration (e.g., [11, 12]). Although these 

studies included the effect of the Reynolds number on the wind 

loading of circular cylinders, the general formulation of the 

equations of motion and the approach used to obtain the solutions 

in terms of the onset conditions of coupled galloping are also 

applicable to the cases in which the Reynolds number is not 

relevant. A more recent study provided a comprehensive 

treatment of the galloping problem and highlighted the effects of 

factors such as the frequency difference of the participating 

modes on the onset and the characteristics of coupled 

translational galloping [13]. However, due to linearization of the 

problem, the results of this study are valid only for galloping 

oscillations of small amplitudes. In another recent study, the 

equation of coupled galloping of a slender structure in boundary 

layer flow was derived and used to assess the coupled galloping 

of a full-scale tower [3]. This study, however, also only focused 

on the onset of the galloping oscillation. 

In addition to the studies of the instability boundary of coupled 

galloping, several investigations have also been used to study the 

response of the structure post galloping onset. Li. et al. 

formulated the nonlinear equations of coupled galloping of 

slender structures in turbulent flow [14]. However, in an 

illustrative application, this study unrealistically assumed the 

turbulence to be fully correlated along the height of the structure. 

In an effort to advance the understanding of dry cable galloping, 

Raeesi et al. derived for the nonlinear equations of galloping 

motion of an inclined circular cylinder and used these equations 

as a basis to numerically assess the galloping response of the 

cylinder subjected to turbulent flows [15]. Although the effects of 

the Reynolds number are included in the equations, a reduced 

version of this model can be readily applied to the cases when 

Reynolds number effect is trivial. These equations, however, are 

only for a two degree of freedom cylinder sections in uniform 

flow and cannot be used to model the galloping oscillation of a 

full-scale elastic towers in sheared boundary layer flow. 

This paper presents the formulation of the nonlinear equations of 

coupled translational galloping of an elastic slender structure in 

state-space form. These equations are used as a basis to 

numerically assess the galloping of a full-scale tower in 

simulated boundary layer flow. The effects of the turbulence 

intensity of the flow and the structural damping of the tower on 

the major characteristics of the vibration are investigated. 

Analytical Formulation 

Figure 1 schematically depicts the wind components, the forces 

acting on a section of unit length of a slender structure and the 



translations of the section about its principal axes. In this graph, 

U  is the mean along-wind speed, u  and v  are the along-wind 

and across-wind components of the turbulence, xr  and yr  are the 

mean displacements of the section in the directions of the 

principal axes, rx and ry are the dynamic displacements, D and L 

are the drag and lift forces, respectively,   is the angle of 

incidence of the mean wind component defined relative to the 

principle axis x ,   is the increment of the angle of incidence 

of the total horizontal wind speed relative to the cross-section, the 

magnitude of which is relU , and   is the total angle of incidence 

of the relative wind speed. 
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Figure 1. Instantaneous wind and force components and the resultant 

translations of a structural section 

Using the quasi-steady assumption, the drag and lift forces acting 

on the section of unit length can be expressed as 
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in which CD(α) and CL(α) are the drag and lift force coefficients 
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The force components in the directions of the principal axes are 
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For a section of unit length, the equation of motion is. 
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In which m(z) is the mass per unit length of the structure at height 

z, cxx and cyy are the damping coefficients about the principal 

axes, and ωx and ωy are the natural frequencies of the structure in 

these directions. Assuming that the vibration of a slender tower is 

dominated by one mode each about the principle axes, the 

translational displacements of a slender tower at a height of z 

above ground can be expressed as                                        
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are the modal matrix and the generalized coordinate 

vector, respectively. With equation (7), the generalized 

equations of motion of a slender tower of height h is 
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are the generalized mass, damping matrices and the generalized 

force vector. The elements of these matrices and vector are 
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In equation (12), ζx and ζy are the damping to critical ratios of the 

modes of interest.    

Equation (9) can be alternatively written in state-space form as 

 A ΒF                                           (14) 

in which 
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Since both 2

relU  and      are nonlinear functions of the 

velocities of the translation, xr  and 
yr , equation (14) is a 

nonlinear differential equation. Closed-form solution for this 

equation is impractical. For this reason, the response of the 

structure can be sought using numerical methods only. 

Illustrative application 

The formulation presented above is used in the following to 

evaluate the coupled galloping of a slender tower as an 

illustrative application. Figure 2 shows a positive train control 

tower consisting of a base tube and a swing tube, which are both 

rectangular Hollow Structural Steel sections.  Table 1 lists the 

major dimensions of this tower.  
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Figure 2. (a) A positive train control tower and (b) coordinate system for 

description of wind and tower vibration 

This tower was instrumented for monitoring because many 

failures of this type of tower due to wind-induced vibrations have 

been observed. The monitoring system consisted of 

accelerometers at three heights, one at the top of the swing tube, 

one at the top of the base tube, and one at a location that is 4.27 

Swing tube 

Base tube 



m from the lower end of the swing tube and three ultrasonic 

anemometers at heights of 2.44 m, 10 m and 18.5 m above 

ground level on an adjacent tower. All the sensors were 

continuously sampled at a frequency of 100 Hz. More details 

about the tower and the monitoring system can be found in a 

published previous study [3], which has identified the 

problematic vibrations to be coupled translational galloping. 

Figure 2 (b) shows the coordinate system that will be used 

subsequently to describe the measured wind speed and directions 

and vibrations of the tower. 

 Width 

(cm) 

Wall Thickness 

(cm) 

Corner 

Radius/Width 

Length 

(m) 

Base Tube 21.0 0.74 0.07 9.3 

Swing Tube 12.7 0.59 0.09 16.5 

Table 1. Dimensions of the structural members of the tower instrumented 

for vibration measurements 

In this study, numerical evaluation of the tower response based 

on the analytical formulation is achieved using the fourth-order 

Runge-Kutta method. This necessitates knowledge of the natural 

frequencies, damping ratios and shapes of the modes of interest, 

the force coefficients of the cross-sections of the tower, and the 

wind field in the boundary layer. The full-scale measurement 

data revealed that the large-amplitude vibrations are dominated 

by the fundamental modes about the weak and strong axes of the 

tower. For this reason, the numerical evaluation of the tower 

response will only consider these two modes, the frequencies of 

which are estimated to be 0.62 Hz and 0.7 Hz, respectively, based 

on the power spectral density functions of representative 

acceleration records. In a previous study [3], the damping ratios 

of these two modes were estimated using the logarithmic 

decrement method based on free vibration tests to be ζx=1.5% 

and ζy=1.4%, and the shapes of these two modes have been 

estimated through a finite-element model of the tower to be: 
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The force coefficients of the tower section consisting of the 

swing tube only and those of the section consisting of both the 

swing tube and the base tube have also been estimated in a 

previous study based on wind tunnel tests [3]. In this study, the 

force coefficients are approximated in the form of 7th order 

power series based on least squares fits. As an illustration, Figure 

3 shows the drag and lift force coefficients of the swing tube (CD1 

and CL1) and those of the tower section consisting of the swing 

and base tubes (CD2 and CL2) for a range of wind angle of 

incidence and the corresponding polynomial fits. It is assumed in 

this study that these force coefficients are not affected by the 

wind turbulence because the integral length scales of the wind 

over most of the height of the tower are much larger than the 

cross-sectional dimensions of the tower. 

 

Figure 3. Force coefficients of the tower sections for -99°<α<-72° 

To provide the excitation in the analytical model, the spectral 

representation method [16] is used to simulate the turbulence in 

the wind. The power spectral density functions of the turbulence 

are assumed to be of the Kaimal form, which can be expressed as 
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for the longitudinal and lateral components, respectively. In these 

expressions *u  is the friction velocity and   is the circular 

frequency. The coherence function of the turbulence is assumed 

to follow that proposed by Davenport: 
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where Δz is the distance between heights z2 and z1 and Cz is a 

constant. Cz=10 for longitudinal turbulence, and Cz=6.7 for 

lateral turbulence. The simulated turbulence field is superposed 

to a power-law mean wind speed profile to yield the complete 

wind field in the horizontal direction. 

Figure 4 shows an example segment of wind speed and angle of 

incidence relative to the tower measured at the height of the top 

of the full-scale tower, and Figure 5 shows the displacements of 

the top of the tower as well as the instantaneous frequencies of 

the dominant modes of vibration, which were estimated by 

identifying the frequencies associated with the largest magnitude 

of the wavelet scalograms of the displacements at each time 

instant. Due to the variation of the mean wind speed and 

direction as shown in the graph, which are estimated through 

wavelet thresholding using a 11th order Daubechies 10 wavelet, 

the large-amplitude oscillations dominated by the component 

about the weak axes did not remain steady-state after the initial 

growth of the vibrtaion. However, it can be observed that when 

the vibration amplitudes were large, the vibration frequencies in 

the two orthogonal directions essentially coincide despite the fact 

that the natural frequencies of the modes in these two directions 

are considerably different. This suggests strong coupling between 

the vibrations in the two directions. 

 

Figure 4. An example segment of wind speed and angle of incidence 

 

Figure 5. An example segment of displacement time histories and 

estimated instantaneous frequencies of the dominant modes  

Figure 6 shows the time histories of the numerically simulated 

response of the tower at its top to the excitation of simulated 

wind field according to equations (18) to (20) that matches the 

mean wind speed and angle of incidence as well as the turbulence 

intensity of that presented in Figure 4. Also shown in this figure 

are the instantaneous frequencies of the vibrations. It can be seen 



that the numerically simulated and measured vibrations reached 

similar amplitudes, and the coincidence of the frequencies due to 

coupling at large vibration amplitudes observed in the full-scale 

vibration can also be seen in the simulated vibrations. 

 

Figure 6. Numerically simulated displacement time histories and 

estimated instantaneous frequencies of coupled galloping oscillation 

Because galloping instability of this tower occurs only over 

narrow ranges of wind angles of incidence [3], a comparison 

between the statistics of the recorded full-scale vibrations and 

simulated vibrations has not been achieved due to the challenges 

posed by the full-scale wind often being nonstationary. For this 

reason, only the dependence of the representative characteristics 

of the simulated vibrations on turbulence intensity are illustrated 

herein. Figure 7 shows the dependence of the RMS amplitude (σx 

and σy) and kurtosis (kx and ky) of the oscillation of the tower at 

its top at a mean wind speed of 20 m/s for a number of mean 

wind angles of incidence at which coupled galloping is 

determined to occur based on both full-scale data and numerical 

simulation. It can be seen that for this particular tower, the RMS 

amplitude of the dominant component of the vibration decreases 

with increasing turbulence intensity while the RMS amplitude of 

the other component is not significantly affected by the 

turbulence. It also can be observed that when the turbulence 

intensity is low, the vibration exhibits significant hardening non-

Gaussian characteristics and that when the turbulence intensity 

becomes high, the vibration becomes closer to be Gaussian. This 

is significant for the performance of the tower as the distribution 

of the response critically affect the extreme and fatigue loading 

of the structure (e.g., [17]). 

 

Figure 7 Dependence of the standard deviation and kurtosis of the 

vibration on turbulence intensity 

Conclusions 

An analytical model is developed based on the quasi-steady 

assumption to represent the nonlinearly coupled translational 

galloping of slender structures. This model is used as a basis to 

numerically evaluate the coupled galloping of a full-scale slender 

tower subjected to wind fields simulated using the spectral 

representation method. It is illustrated that the numerically 

simulated vibration can match the recorded full-scale vibration in 

characteristics in both amplitude and frequency. The results of 

the numerical evaluation also suggest that the turbulence 

intensity of the flow significantly affects the characteristics of the 

vibration that are critical for the extreme and fatigue loading of 

the structure. It is revealed that increasing turbulence intensity 

results in decreasing RMS amplitude of the dominant vibration 

component and that the response deviates more from the 

Gaussian distribution with decreasing turbulence intensity. 
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