Reproducibility, reuse, and standards: interoperable model sharing.

David Nickerson Auckland Bioengineering Institute Auckland, New Zealand

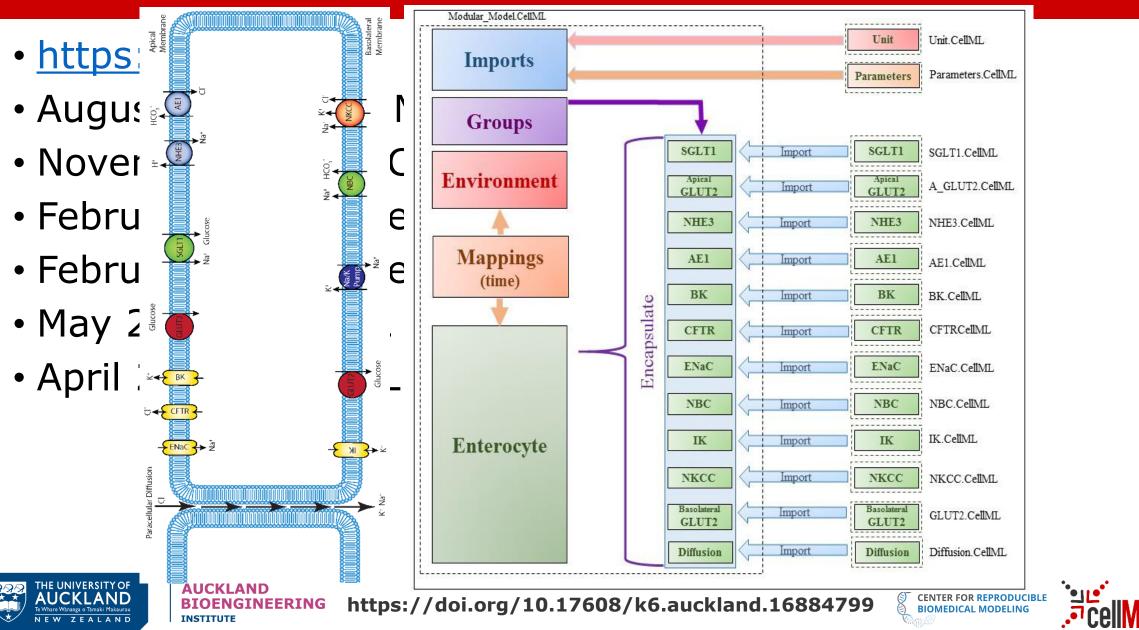
SimCardioTest Workshop on Standardisation

AUCKLAND BIOENGINEERING

27 October 2021 NG https://doi.org/10.17608/k6.auckland.16884799

Logo page

CENTER FOR REPRODUCIBLE BIOMEDICAL MODELING



AUCKLAND BIOENGINEERING

27 October 2021 https://doi.org/10.17608/k6.auckland.16884799

The evolution of CellML...

CellML 2.0

- Normative specification
- Only CellML allowed in the XML document
 - No metadata, annotations, cmeta:id
 - No extension elements
- XML syntax simplifications
 - Grouping replaced with only encapsulation
 - No more map_components
- Improved reusability

INSTITUTE

- Connections no longer have direction
- Single interface attribute controlling scope: public, private, public_and_private, none

27 October 2021 ING https://doi.org/10.17608/k6.auckland.16884799

CellML 2.0

- Units clarifications
 - No need to specify base_units explicitly
 - Units with offsets removed
 - "celsius" removed from built-in units
 - Component-scope unit definitions removed
- New and compulsory MathML subset
 - No more "recommended" subset to support
 - Well defined, no confusion

INSTITUTE

- Reset rules
 - Arbitrary rules to "reset" variables

libCellML

- New C++ library to meet the needs of users
- Supporting CellML 2.0 and beyond
- Much more streamlined and maintainable
- Better suited for testing out new features and extensions to the specification
 - Allowing rapid prototyping
 - Exploring alternatives

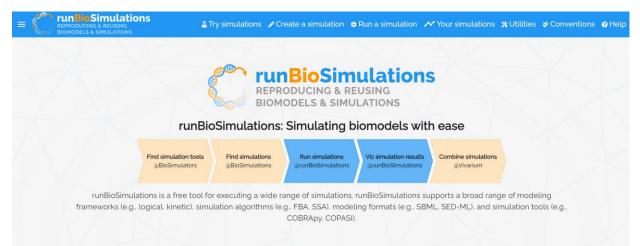
INSTITUTE

Testing model exchange and reproducibility

SED-ML

<u>https://sed-ml.org</u>

- What needs to be done to reproduce a result in a publication
 - Model manipulations/pre-processing
 - Algorithms to apply
 - Analyses to perform

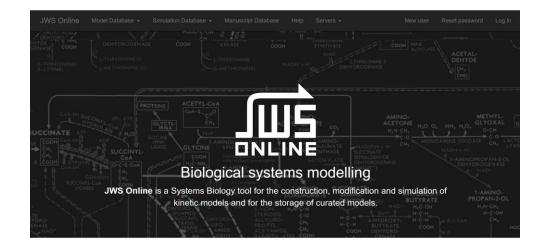

INSTITUTE

- Post-processing of resultant data
- Presentation of results
- Designed for XML-based model encoding formats (e.g., CellML, SBML) but now "working" for other model types
 - As long as there is a way to identify things in a model

THE UNIVERSITY OF AUCKLAND Te Whare Wananga o Tamaki Makaurau N E W Z E A L A N D 27 October 2021 NG https://doi.org/10.17608/k6.auckland.16884799

CENTER FOR REPRODUCIB

SED-ML enables...



Helping investigators execute biomodeling studies

Simulate studies Execute many formalisms & algorithms runBioSimulations is a central application for executing simulations of a broad range of

Vis simulation results Analyze predicted trajectories runBioSimulations provides a simple web

https://run.biosimulations.org

Construct your own model

With the new JWS Online model builder you can build a model from scratch using a simple interface. Models can be simulated directly in the JWS Online simulator. The builder adheres very closely to the SBML model specification and

Simulate models

CENTER FOR REPRODUCIBLE

BIOMEDICAL MODELING

Simulate curated kinetic models from the JWS Online database, or noncurated models built or uploaded to JWS Online. JWS Online supports time evolutions, steady-state simulations, structural analysis, metabolic-control analysis.

SBML compliant

JWS Online now uses a database implementation with a native format that mirrors the SBML specification. This minimises changes in SBML structure during the upload-edit-save cycle. JWS Online supports uploading and modification of

http://jjj.biochem.sun.ac.za/

AUCKLAND BIOENGINEERING


27 October 2021 G https://doi.org/10.17608/k6.auckland.16884799

Reuse published studies

Evaluate new hypotheses

By making it easier to execute simulations

SED-ML enables...

Schematic diagram of the Cell Model, taken from the original O'Hara-Rudy paper under the CC-BY licence.

AUCKLAND

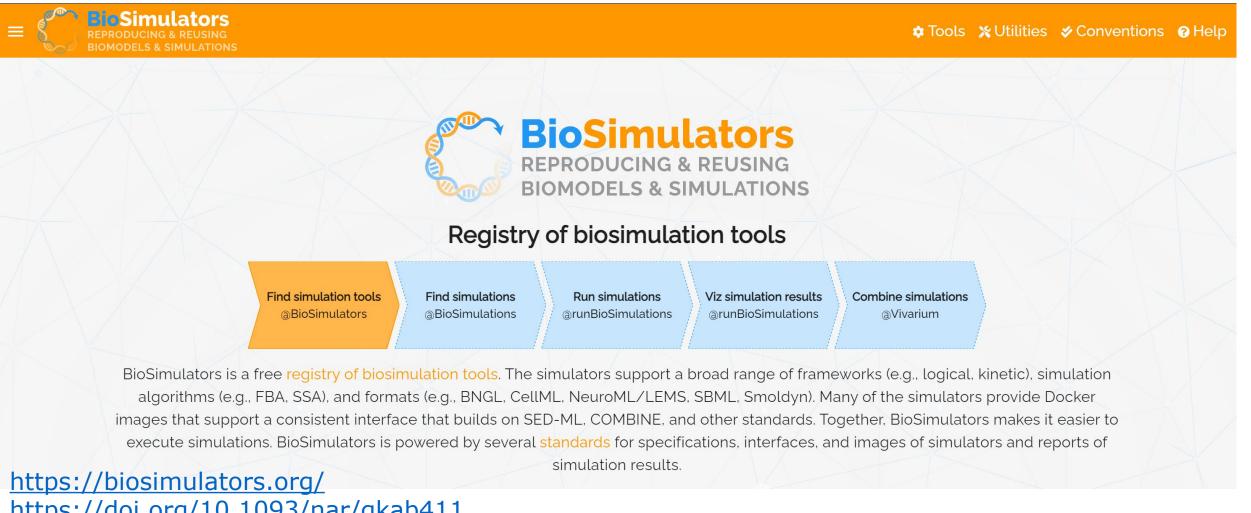
INSTITUTE

https://models.physiomeproject.org/e/5a0/

27 October 2021 https://doi.org/10.17608/k6.auckland.16884799 BIOENGINEERING

is unspecified.

SED-ML lessons


- Easy to share simple analyses
 - Analyses that all tools support
 - When tools implement things in very similar manner
- Hard to share complex analyses
 - i.e., the novel analyses that will finally get that Nature paper!
- Range of tools supporting different aspects of the "standard"
- Reproducibility within compatible tools works well
 - But hard to know which tools are compatible
- Interoperability between tools possible for experts

27 October 2021 RING https://doi.org/10.17608/k6.auckland.16884799

CENTER FOR REPRODUCI

One solution

https://doi.org/10.1093/nar/gkab411

INSTITUTE

AUCKLAND

27 October 2021 **BIOENGINEERING** https://doi.org/10.17608/k6.auckland.16884799

CENTER FOR REPRODUCIBLE

BIOMEDICAL MODELING

SED-ML v2

- (current ideas)
- Clear definition of simulator capabilities
 - Common API?
- Workflow-like composition of computation tasks
 - Pre-processing of models
 - Analysis and simulation algorithms
 - Post-processing of resultant data
 - Visualisation of results
- Standard tools for interpreting the workflows
 - Serializable into traditional workflow engines, Python scripts, etc.
 - Modularity and reuse

27 October 2021 https://doi.org/10.17608/k6.auckland.16884799

CENTER FOR REPRODUCIB

OpenCOR

<u>https://opencor.ws</u>

INSTITUTE

- CellML 1.0 and 1.1 editor and simulator
- Supports parts of SED-ML

- Embedded Python interpreter for custom analyses
- libOpenCOR
 - Separate simulation core from the desktop application
 - Enable reuse of high-performance simulation module

Semantics are key

Harmonizing semantic annotations for computational

models in biology

Maxwell Lewis Neal[®], Matthias König[®], David Nickerson[®], Göksel Mısırlı, Reza Kalbasi, Andreas Dräger, Koray Atalag,

Vijayalakshmi Chellia Sharon Crook^(D), Migu John H. Gennari, Padr Nick Juty, Chris Myers Jacky L. Snoep, Vasun Dagmar Waltemath

Corresponding author: Maxwell Lewis Neal

N Suite 500, Seattle, WA 98109, USA. Tel: 20

DE GRUYTER

CORRECTED PROOF

libOmexMeta: enabling semantic annotation of models to support FAIR principles

Journal of Integ Ciaran Welsh, David P Nickerson, Anand Rampadarath, Maxwell L Neal, Herbert M Sauro,

John H Gennari 🖂

John H. Gennari*, Matthias König, Goksel Misirli, Maxwell L. Nea David P. Nickerson and Dagmar Waltemath

Bioinformatics, btab445, https://doi.org/10.1093/bioinformatics/btab445

Published: 16 June 2021 Article history **• OMEX metadata specification (vers**

https://doi.org/10.1515/jib-2021-0020

Received August 7, 2021; accepted August 27, 2021; published online October 20, 2021

https://doi.org/10.1093/bib/bby087 https://doi.org/10.1515/jib-2021-0020

AUCKLAND

INSTITUTE

https://doi.org/10.1093/bioinformatics/btab445 https://github.com/sys-bio/libOmexMeta

27 October 2021 https://doi.org/10.17608/k6.auckland.16884799 BIOENGINEERING

Standards = Reproducibility?

the computational modeling in biology network

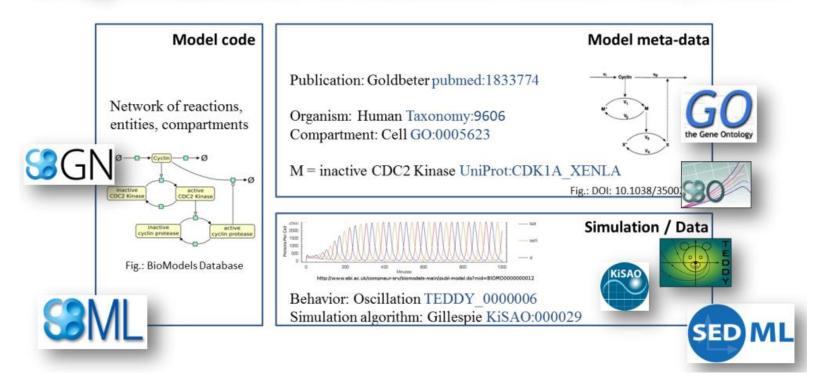


Figure from **Dagmar Waltemath**

CENTER FOR REPRODUCIBLE

BIOMEDICAL MODELING

INSTITUTE

27 October 2021 **AUCKLAND** https://doi.org/10.17608/k6.auckland.16884799 BIOENGINEERING

SMAX			Sea	arch Site
Models Home	Exposures	Documentation		Log in
You are here: Home	/ Physiome Repositor	ry		
Physiome	Repository	/	Na	vigation
Main model I	isting		Dhu	reieme Benecitory

The list of processed model exposures (formats: 100 per page | full list), which are models that have documentation pages generated from the metadata they contain. Alternatively, you may start browsing via the categories that are listed below:

Please note: Comments about the functional status or curation status of the models within this repository are the opinions of the CellML Model Repository curators. We do our best to accurately represent these models, but please contact us if you have a query or issue with comments made on this site.

CellML models by category

- Calcium Dynamics
- Cardiovascular Circulation
- Cell Cycle
- Cell Migration
- Circadian Rhythms
- Electrophysiology
- Endocrine
- Excitation-Contraction Coupling
- Gene Regulation
- Hepatology Immunology
- Ion Transport
- Mechanical Constitutive Laws
- Metabolism
- Myofilament Mechanics
- Neurobiology
- pH Regulation
- PKPD
- Protein Modules
- Signal Transduction
- Synthetic Biology

FieldML models

Searching

Searching of models can be done anywhere on the site using the search box on the upper right hand corner.

Alternative search options for models in this repository:

- Ontology based search engine
- · Morre CellML search engine

© 2001-2021 - IUPS Physiome Project.

Physiome Repository

Over 90% of models could not be reproduced on initial attempt based on published information

	3	EMBL-EBI	🔦 Services	🐯 Research	🎄 Training	 About us 	EMBL-EBI
BioModels	Individual Models	 Search 			10		q
	What is this box used for?	Examples:	MAPK cascade ho	mo sapiens lung can	cen		Search tips
👫 Home 🗗 Browse 🔻 土 Submit 🛛 🛠 Curation 👻 🤂 He	Ip 👻 1 About us 👻 🖻 Contact us	🗩 Feedbac	R	4		+J Log	in 4+Register

BioModels is a repository of mathematical models of biological and biomedical systems. It hosts a vast selection of existing literature-based physiologically and pharmaceutically relevant mechanistic models in standard formats. Our mission is to provide the systems modelling community with reproducible, high-quality, freely-accessible models published in the scientific literature. More information about using BioModels such as model submission, update, publication can be found in the FAQ.

Non-curated

1.282 models

•••			

Manually Curated

1.039 models

GO Chart Auto generated 833 models 1,132 classes

BioModels Parameters 228,842 records

		-
Model of The Month	2	

Browse by Organism

This shows models distribution based on organisms. Click on a

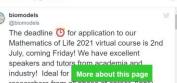
Creemers2021 - Tumor-immune dynamics and implications on immunotherapy responses

A mechanistic ordinary differential equation model simulating tipping points in cancer-immune dynamics, which govern tumo

August, 2021

responses and clinical outcomes to immunotherapy.

Site Map Accessibility Contact About Model(s) associated with this Model of the Month:


Submission /

Update

bubble to display models.

Find us on Twitter

Tweets by @biomodels

https://models.physiomeproject.org/

https://www.ebi.ac.uk/biomodels/

AUCKLAND BIOENGINEERING INSTITUTE

27 October 2021 https://doi.org/10.17608/k6.auckland.16884799

https://reproduciblebiomodels.org/

AUCKLAND BIOENGINEERING

27 October 2021 MG https://doi.org/10.17608/k6.auckland.16884799

Working with journals

PLOS COMPUTATIONAL BIOLOGY

EDITORIAL

Improving reproducibility in computational biology research

Jason A. Papin¹*, Feilim Mac Gabhann², Herbert M. Sauro³, David Nickerson⁴*, Anand Rampadarath⁶

1 Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, United States of America, 2 Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America, 3 Department of Bioengineering, University of Washington, Seattle, Washington, United States of America, 4 Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand

CENTER FOR REPRODUCIBLE

BIOMEDICAL MODELING

* jap8r@virginia.edu (JAP); d.nickerson@auckland.ac.nz (DN)

https://doi.org/10.1371/journal.pcbi.1007881

AUCKLAND

INSTITUTE

27 October 2021 https://doi.org/10.17608/k6.auckland.16884799 BIOENGINEERING

Encouraging collaboration and reuse

- Needs to be easy
- Harmonising annotations
- "Rules" for how we construct models
- Reproducibility is key!

INSTITUTE

Track and recognise contributions

27 October 2021 NG https://doi.org/10.17608/k6.auckland.16884799

https://journal.physiomeproject.org/

AUCKLAND

INSTITUTE

27 October 2021 https://doi.org/10.17608/k6.auckland.16884799 BIOENGINEERING

What is a *Physiome* publication?

📄 Data	►
Important code	•
Scripts	►
Simulations	►
Stuff we need	►

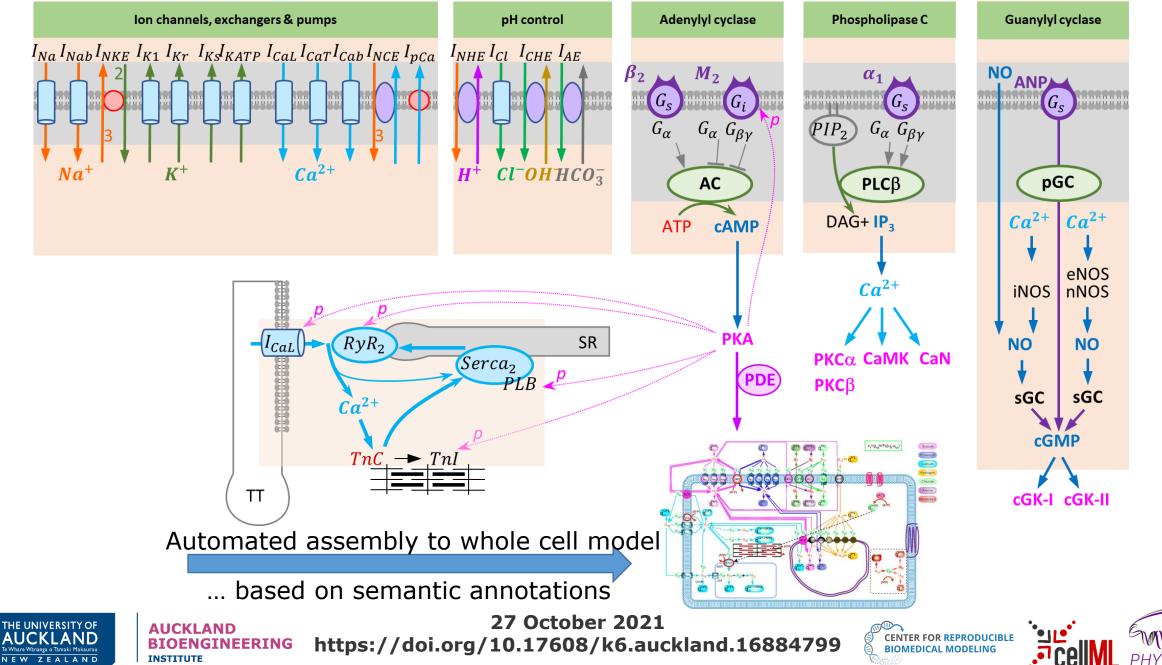
CodePrimaryDescriptivepublicationsummary

AUCKLAND BIOENGINEERING https:

27 October 2021 G https://doi.org/10.17608/k6.auckland.16884799

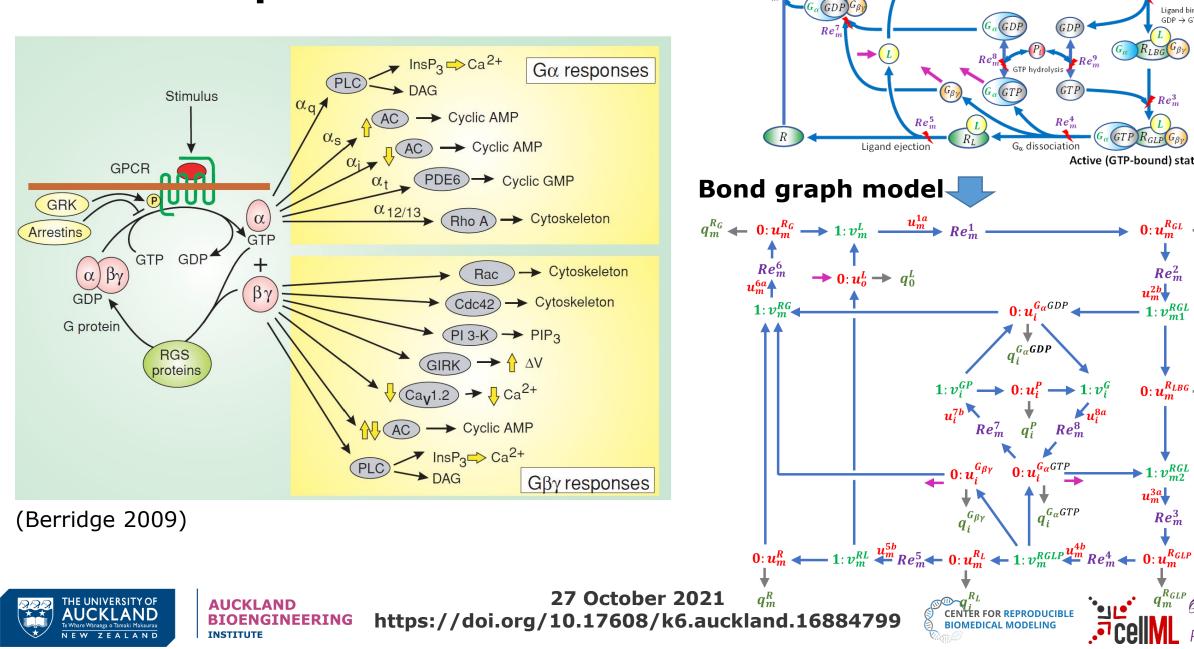
Modularity is also key

- Manage complexity
- Enable reuse



AUCKLAND BIOENGINEERING

27 October 2021 MG https://doi.org/10.17608/k6.auckland.16884799



FCUs: Functional Cell Units

222

FCU Example: GPCR

Resting (GDP-bound) state

G protein trime

 Re_m^1 Ligand binding

Figure rom $0: u_m^{R_{LBG}} \rightarrow q_m^{R_{LBG}}$ D **U**D

PHYSIOME

Ligand binding initiates GDP → GTP exchange

R_{LBG} G_{βγ}

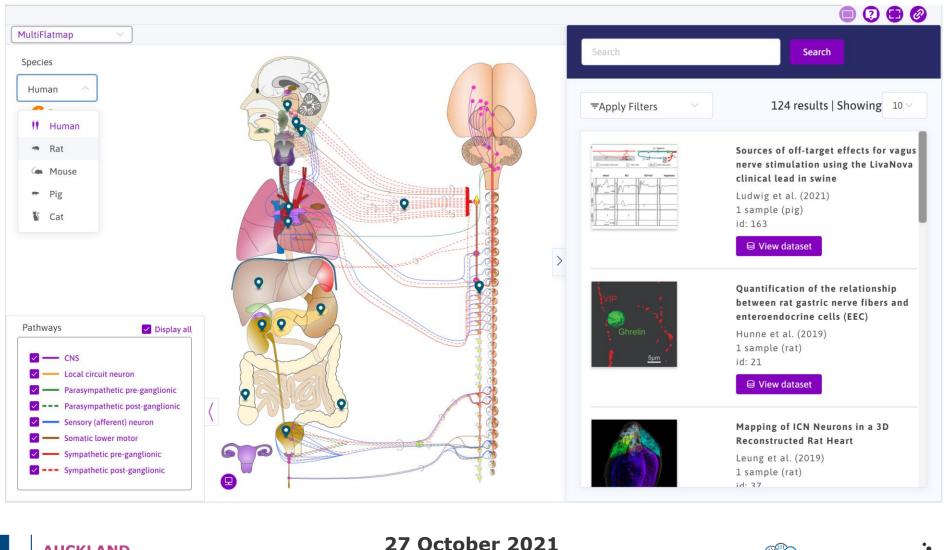
 Re_m^3

 $\rightarrow 0: u_m^{R_{GL}} \rightarrow q_m^{R_{GL}}$

 Re_m^2

1: v_{m1}^{RGL}

 $\blacktriangleright 1: v_{m2}^{RGL}$

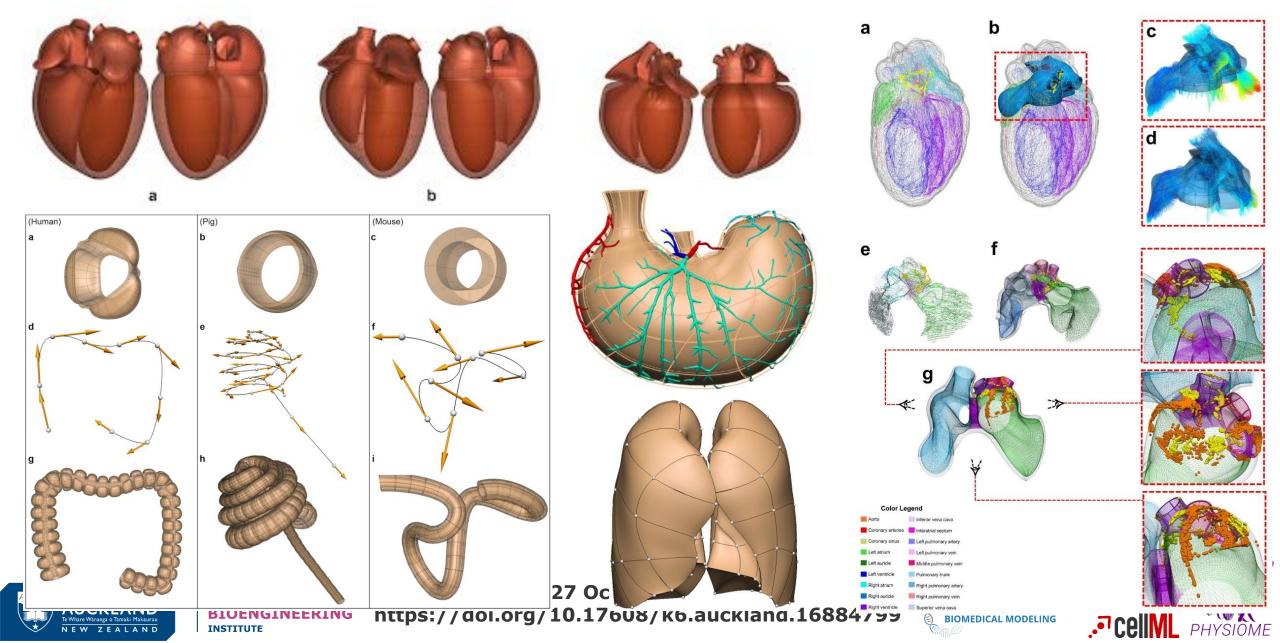

 Re_m^3

 u_m^{3a}

Active (GTP-bound) state

Database for physiological data and models

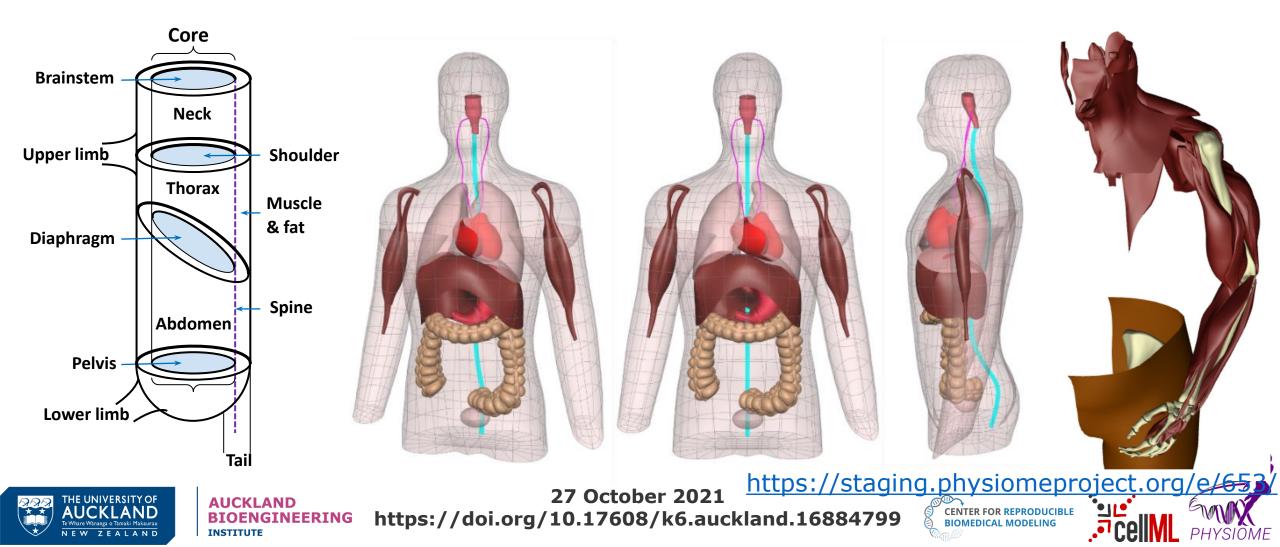
A semantic knowledgebase underlying all data and models: <u>sparc.science/maps</u>



AUCKLAND BIOENGINEERING INSTITUTE

27 October 2021 G https://doi.org/10.17608/k6.auckland.16884799

Scaffolds The 3D reference coordinate system for each organ is consistent across multiple species, in order to facilitate cross-species comparisons and the analysis of variation within a population.


Whole body scaffolds

We are building a workflow in which organs and organ systems can be automatically assembled into the whole body reference coordinates. This will allow us to create both personalised models and population models for virtual clinical trials.

Reference coordinates

A pipeline for automated assembly

Database

Acknowledgements

- Hugh Sorby
- Alan Garny
- Anand Rampadarath
- Tommy Yu
- Poul Nielsen
- Peter Hunter
- ABI Physiome Group

AUCKLAND

INSTITUTE

MINISTRY OF BUSINESS, INNOVATION & EMPLOYMENT HĪKINA WHAKATUTUKI

Aotearoa Foundation

LAND 27 October 2021 NGINEERING https://doi.org/10.17608/k6.auckland.16884799

