EXPERIMENTATION AND FRAMEWORK DEVELOPMENT FOR MULTI-VOLCANIC HAZARD IMPACT ASSESSMENT

NICOLE ALLEN⁽¹⁾, THOMAS WILSON⁽¹⁾, BEN KENNEDY⁽¹⁾, ALLAN SCOTT⁽¹⁾, CAROL STEWART⁽²⁾ (1) UNIVERSITY OF CANTERBURY (2) MASSEY UNIVERSITY

MULTI-VOLCANIC HAZARDS IN THE AUCKLAND VOLCANIC FIELD (AVF)

- AVF eruptions are intrinsically multi-hazard events
- Multi-hazard relationships are complex and hazards can cascade or compound during an eruption
- Multi-volcanic hazard impacts are under-researched, particularly in relation to New Zealand assets
- The production of detailed AVF scenarios allows for the development of multi-volcanic hazard impact assessment framework

RESEARCH AIMS

- Develop a multi-volcanic hazard impact assessment framework, which includes impact cumulation, to improve our ability at assess multi-hazards.
- Conduct experiments and develop multi-hazard vulnerability functions to reduce assumptions and improve the robustness of the impact assessment framework
- Common building typology, timber-framed residential with sheet metal roof cladding - 36% of buildings in Auckland
- Common multi-hazard tephra fall and volcanic ballistic projectiles occur concurrently and all DEVORA AVF scenarios

TEPHRA LOADING EXPERIMENT OBJECTIVES

- Lack of experimental assessments of tephra loading impacts
- What performance can we expect from New Zealand buildings? – Hypothesis DS4 will occur around 10-15kPa
- Comparison of experimental damage with Global Risk Assessment (GAR15) Regional Vulnerability Functions, and damage state descriptions (Hayes et. al, 2019)

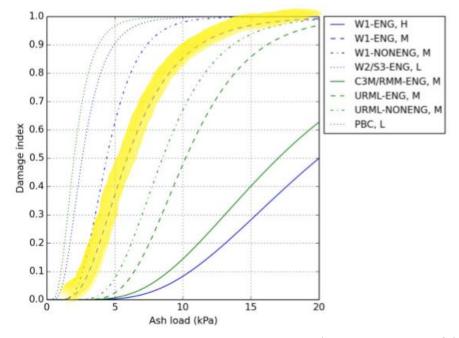
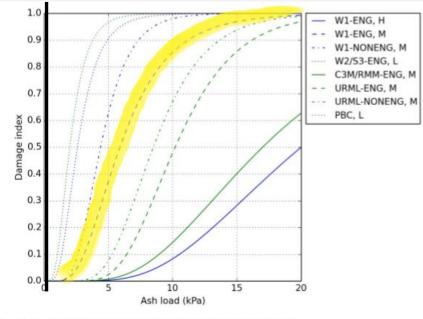
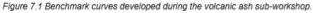
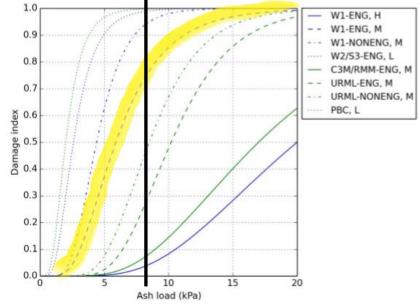




Figure 7.1 Benchmark curves developed during the volcanic ash sub-workshop. (Maqsood et. al, 2014)

DS0	No damage
DSI	Minor damage to non-structural elements
DS2	Moderate damage but vertical structure and roof supports intact
DS3	Severe damage to the roof and supports
DS4	Partial or total collapse of the roof and supports
DS5	Building collapse

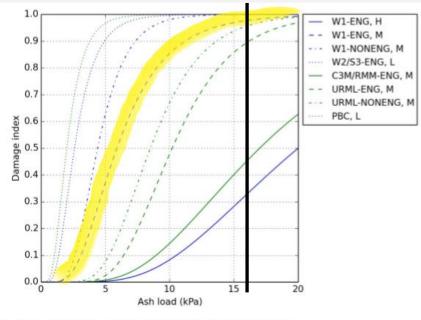
- Built to New Zealand building code NZS3604
- Rafter span 2.6m, Rafter spacing 600mm
- The building standard incorporates a 2kPa snow load (approximately 12cm of tephra)



⁽Maqsood et. al, 2014)

DS0	No damage
DSI	Minor damage to non-structural elements
DS2	Moderate damage but vertical structure and roof supports intact
DS3	Severe damage to the roof and supports
DS4	Partial or total collapse of the roof and supports
DS5	Building collapse

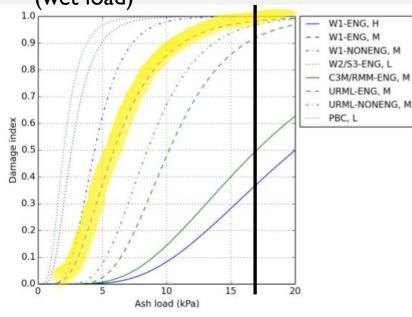
- Load 7.7kPa (dry load), 9.5kPa (wet load)
- Approximately 4 tonnes



⁽Maqsood et. al, 2014)

DS0	No damage
DSI	Minor damage to non-structural elements
DS2	Moderate damage but vertical structure and roof supports intact
DS3	Severe damage to the roof and supports
DS4	Partial or total collapse of the roof and supports
DS5	Building collapse

- Initial structural damage occurred at the fixings where the rafters connect to the ridge beam.
- Initial structural damage 13.4kPa (dry load), 16.8kPa (wet load)

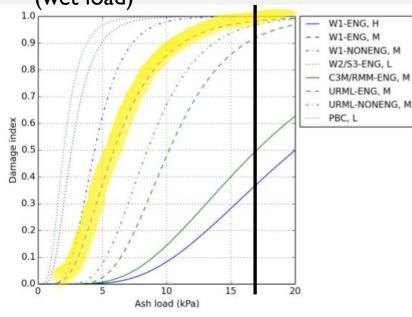


DS0	No damage
DSI	Minor damage to non-structural elements
DS2	Moderate damage but vertical structure and roof supports intact
DS3	Severe damage to the roof and supports
DS4	Partial or total collapse of the roof and supports
DS5	Building collapse

Figure 7.1 Benchmark curves developed during the volcanic ash sub-workshop.

(Maqsood et. al, 2014)

- Once rafter failure occurred, batten failure occurred
- A total of 7.5 tonnes of pseudo tephra were applied to the roof
- Total load 14.9kPa (dry load), 18.7kPa (wet load)



DS0	No damage
DSI	Minor damage to non-structural elements
DS2	Moderate damage but vertical structure and roof supports intact
DS3	Severe damage to the roof and supports
DS4	Partial or total collapse of the roof and supports
DS5	Building collapse

Figure 7.1 Benchmark curves developed during the volcanic ash sub-workshop.

(Maqsood et. al, 2014)

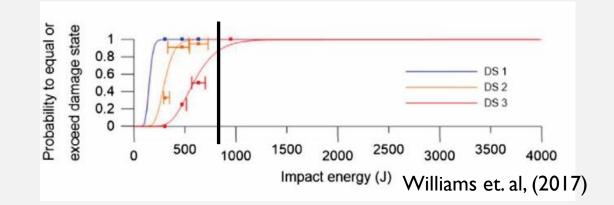
- Once rafter failure occurred, batten failure occurred
- A total of 7.5 tonnes of pseudo tephra were applied to the roof
- Total load 14.9kPa (dry load), 18.7kPa (wet load)

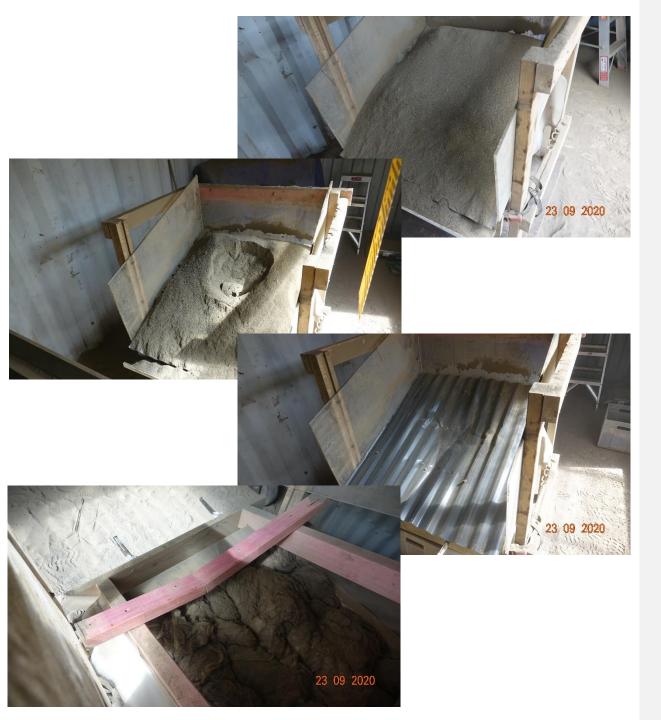
DS0	No damage
DSI	Minor damage to non-structural elements
DS2	Moderate damage but vertical structure and roof supports intact
DS3	Severe damage to the roof and supports
DS4	Partial or total collapse of the roof and supports
DS5	Building collapse

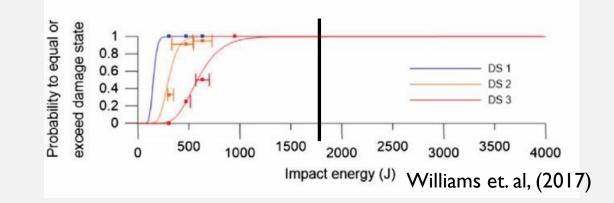
Figure 7.1 Benchmark curves developed during the volcanic ash sub-workshop.

(Maqsood et. al, 2014)

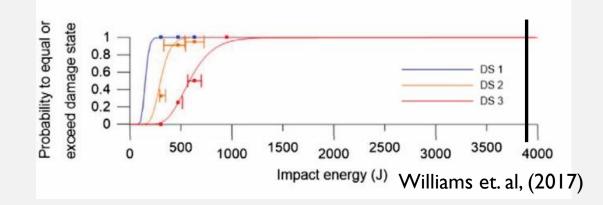
TEPHRA LOADING AND BALLISTIC PROJECTILE EXPERIMENT OBJECTIVES


- Tephra fall and Volcanic ballistics often occur concurrently
- Does the interaction of these hazards alter the impacts they produce?
- Hypothesis
 - low tephra loads will have little or no effect on ballistic impact
 - Moderate tephra loads will cushion ballistic impacts
 - Large tephra loads will lead to ballistic impacts causing structural damage
- Comparison of experimental results with damage states to sheet metal cladding from Williams et. al, 2017
 - DSI cosmetic denting
 - DS2 Tearing
 - DS3 Perforation

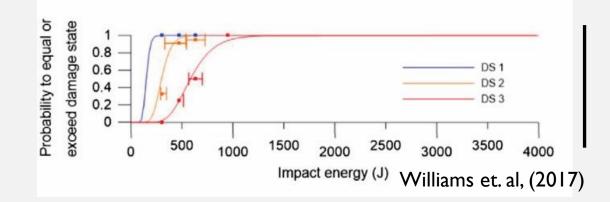


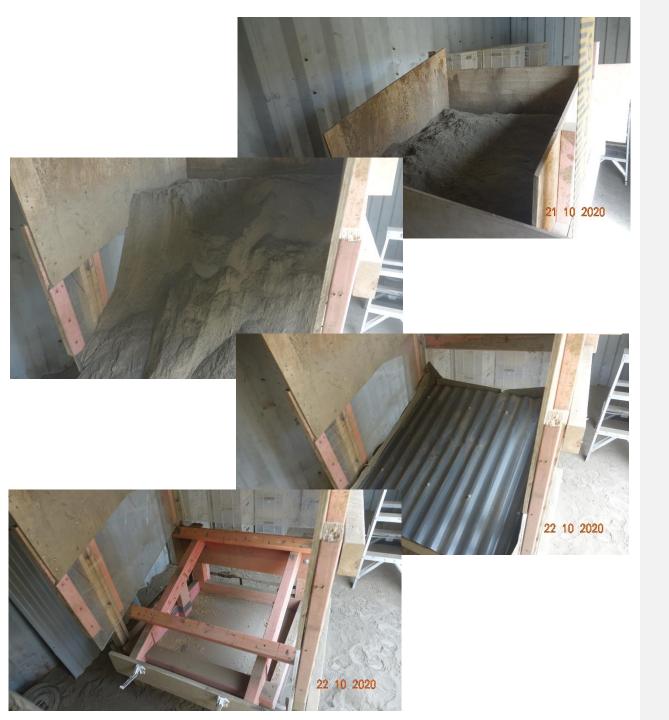


- Ash
 - Load 2kPa
 - Thickness 15cm
- Ballistic
 - Mass 3.5kg
 - Velocity 21 m/s
 - Energy 819J

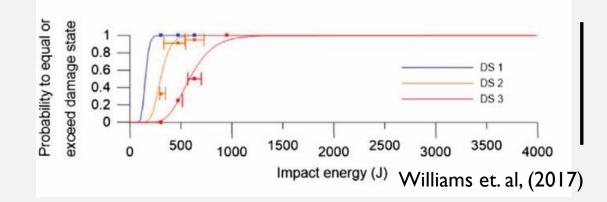


- Ash
 - Load 2kPa
 - Thickness 17cm
- Ballistic
 - Mass 3.5kg
 - Velocity 31 m/s
 - Energy 1767J

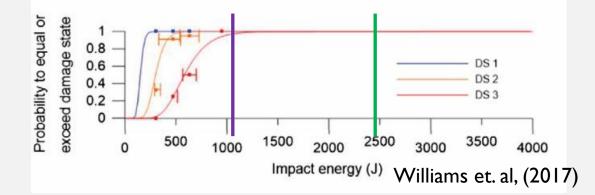

- Ash
 - Load 2kPa
 - Thickness 17cm
- Ballistic
 - Mass 3.5kg
 - Velocity 45m/s
 - Energy 3865J



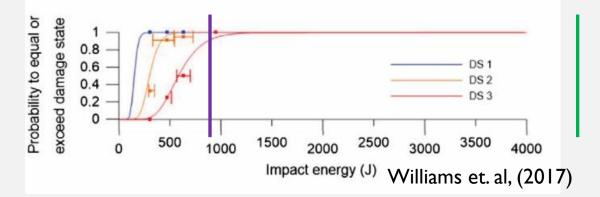
Tephra can cushion ballistic impacts, protecting cladding from perforation, but higher impacts energies can lead to structural damage



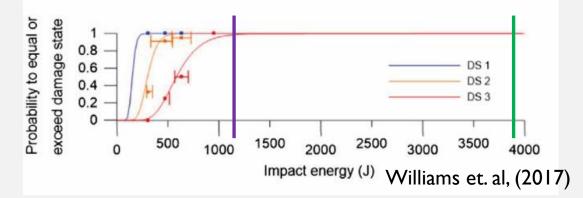
- Ash
 - Load 7.5kPa
 - Thickness 45cm
- Ballistic
 - Mass 8.8kg
 - Velocity 32m/s
 - Energy 4505J


- Ash
 - Load I I kPa
 - Thickness 61 cm
- Ballistic
 - Mass 8.8kg
 - Velocity 32m/s
 - Energy 4592J

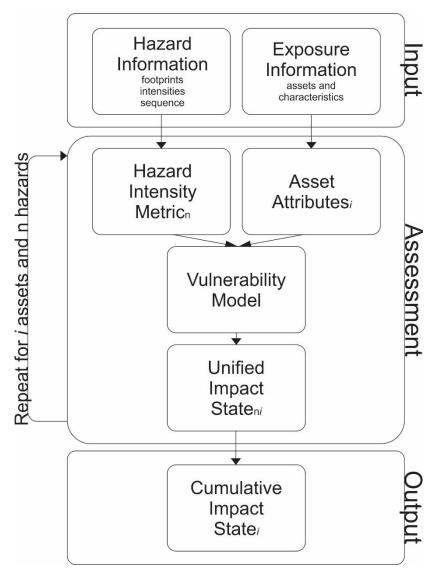
Large loads of tephra can dissipate the energy of ballistics, potentially leading to no or little impact occurring



- 2
- Ash Ash
 - Load IkPa
 Load IkPa
 - Thickness 7cm
 Thickness 9cm
- Ballistic
 Ballistic
 - Mass 3.5kg Mass 1kg
 - Velocity 36m/s Velocity 47m/s
 - Energy 2486J Energy 1075J



- 2
- Ash • Ash
 - Load 0.5kPa
 Load 0.5kPa
 - Thickness 4cm
 Thickness 3.5cm
- Ballistic • Ballistic
 - Mass 3.5kg Mass – Ikg
 - Velocity 50m/s
 Velocity 44m/s
 - Energy 4623J Energy 941J •



- 2
- Ash • Ash
 - Load 0.25kPa
 Load 0.25kPa
 - Thickness 2cm
 Thickness 1.5cm
- Ballistic
 - Ballistic
 - Mass 3.5kg Mass – Ikg
 - Velocity 46m/s
 Velocity 49m/s
 - •
- Energy 3865J Energy 1138J

The size of the ballistic, rather than the impact energy, controls whether a ballistic can penetrate sheet metal cladding

Conceptual multi-volcanic hazard impact framework design. Where i is asset (building) number and n is hazard number.

FRAMEWORK DESIGN

- Currently hazards are represented by a hazard intensity metric
- Assumptions are needed to be made to assign unified impact state and to cumulate impacts
- The development and incorporate multihazard vulnerability models reduces the assumptions and increases the robustness of the framework

THANK YOU

Nicole.Allen@pg.Canterbury.ac.nz

