

Geotechnical characterization of New Zealand volcanic soils for land reclamation purposes

Shaurya Sood, Gabriele Chiaro, Thomas Wilson, Mark Stringer

Contents

- Background
- Scope
- Methodology
- Experimental results
- Conclusions & ongoing investigation

Background

Auckland Volcanic Field (Leonard et al., 2017)

offshore of New Zealand (GNS Science)

UCCC UNIVERSITY OF CANTERBURY The Whate Wite constant of Wite Chan Emergence of Wite Chan And

Background

- 6 million tonnes of building debris (complex mixed waste)
- 10 15 million tonnes of volcanic products (ash, lava, etc. to deal with)
- Total: 25 30 million tonnes

- Canterbury EQ: 7.5 million tonnes
- Tohuko EQ/Tsunami: 30 million tonnes

Clean up of Urban Areas (Mt. Eden Scenario) after Volcanic Eruptions (Hayes et al., 2020)

Scope

- After eruption clean-up, the storage of these volcanic deposits becomes a point of concern
- Utilization of volcanic soils for geotechnical purposes such as

 land filling, embankments, foundations but...

 Vast diversity in volcanic soils characteristics – gradation, minerals

 No simple geotechnical characterization procedure

What makes Volcanic Soils different from Hard-Grained soils?

- Volcanic soils are non-conventional or different from normal hard grained soils
- Due to their formation processes, they constitute pores or voids within their structure
- The **internal pores** or voids makes them **crushable**
- Concerning from engineering point of view

Angular, vesiculated - structure of Kaharoa Pumiceous Sand

Sub-rounded, **non-vesiculated** structure of **New Brighton Beach Sand**

Geomaterials used in Civil Engineering applications

Beach Sand

Gravel

Masado (decomposed granite) – (Source: <u>http://www.ono-</u> kai.com/pit-sand)

Shirasu (volcanic soil) – (Suzuki and Yamamoto, 2004)

Coal wash and Steel Furnace Slag (Chiaro et al., 2015)

Comparable performance of volcanic soils against standard soils?

Geotechnical parameters for landfill

UNIVERSITY OF CANTERBURY

Methodology - Development of geotechnical parameters for compacted land fill design

Eruption scenarios and typical soil samples collected

Mt. Tarawera "Recent" eruptions

- **0.80ka** (rhyolitic) Kaharoa (1300)
- **0.13ka** Tarawera (basaltic), Rotomahana mud (thermally altered rhyolite) Tarawera 1886

Auckland "Older" eruptions

- **140ka** Pupuke (basaltic)
- 85ka Maungataketake (basaltic)

Experimental results - Particle Size Distribution

Being **airfall** deposits, majority of them are **well-graded silty sands** with varying proportions of **fines and gravel**

Grain Size Distributions of Volcanic Soils Collected

Particle Size Distribution (Kaharoa and Maugataketake)

Soil Sample	Gravel (%)	Sand (%)	Fines (%)	PI (%)	D _{max} (mm)	D ₅₀ (mm)	Cu	Cc	Soil Classification
Kaharoa	4.9	81.2	13.8	NP	8.0	0.50	16.3	1.5	Silty Sand (SM)
Maungataketake	-	48.3	51.7	3.7	4.75	0.07	14.5	0.9	Sandy Silt (ML)

- Well-graded
 materials
- Maungataketake finer than Kaharoa

Role of Mineralogy in Estimating Geotechnical Behaviour

Different eruptions – **different deposits** changes in mineralogy (e.g. – Tarawera 1300 & 1886)

Old or recent deposits - Lee, I.K. (1991, PhD Thesis)

Experimental results - Chemical and Mineralogical analyses (Kaharoa & Maungataketake)

Coil	XRF - Major Oxide (Wt. %)										
5011	SiO ₂	TiO ₂	Al_2O_3	Fe ₂ O ₃ T	MnO	MgO	CaO	Na ₂ O	K ₂ O	P_2O_5	LOI
Kaharoa	75.10	0.15	12.27	1.30	0.06	0.23	1.11	3.90	3.38	0.04	2.02
Maungataketake (with sandstone)	57.26	1.37	12.29	8.30	0.11	5.23	6.60	2.44	1.64	0.38	4.00

VPD - Mineral (W/t%)	Soil					
	Kaharoa	Maungataketake				
Glass	79.78	44.93				
Quartz	3.76	-				
Cristobalite	0.40	2.74				
Feldspars	14.97	27.42				
Biotite	0.71	-				
Hornblende	0.32	2.04				
Hematite	0.05	0.13				
Magnetite	-	-				
Pyroxenes	-	9.22				
Olivines	-	3.74				
Clinochlore (Chlorite)	-	5.84				
Nepheline	-	0.55				
Epidote	-	0.95				
Spinel	-	0.44				
Apatite	-	0.96				
Calcite	-	0.33				
Titanite	-	0.73				
Total Crystal Content	20.22	55.07				
Feldspars / (Quartz + Cristobalite)	3.60	10.00				

2 Theta Kaharoa less weathered than Maungataketake

Experimental results – Compaction and Breakage properties (Kaharoa & Maungataketake)

Compaction parameters – Dry density and water content

Flat compaction curve of Kaharoa in comparison to well-shaped curve of Maungataketake (slity sand with little clay nature of latter in comparison to silty sandy nature of former)

Experimental results – Compaction and Breakage properties (Kaharoa & Maungataketake)

Compaction parameters – Void ratio and porosity

Experimental results – Compaction and Breakage properties (Kaharoa & Maungataketake)

Breakage B_r estimation – Hardin's method 1985

Avg. B_r (Kaharoa) = 1.25%, Avg. B_r (Maungataketake) = 5.78%

< 10% using Standard Compaction

Lesser breakage in Kaharoa than Maungataketake – stronger matrix

Experimental results – Effect of Mineral Content and Gradation on Compaction and Breakage

Preliminary Conclusions and Implications

- Well-graded nature of these materials easier to compact and put in field
- Volcanic soils differ in their geotechnical properties based on the magma types, geo-chemistry (Kaharoa rhyolitic, Maungataketake basaltic) and pre and post depositional conditions – therefore, not easy to define their behaviour!
- The extent of weathering (*mineralogy*) and *depositional environments* are dominating factors when we take into account volcanic soils:
 - Effect of clay and silt sized *(finer)* fractions (tighter matrix, higher density as for Maungataketake)
 - *Minerals* (quartz, feldspars predominant) quartz being harder (resists breaking as for Kaharoa)
 - Near to vent **deposition** coarser fragments (as in Kaharoa)

Ongoing and further investigation

- Shear strength
- Collapsibility

Ongoing and further investigation

Compacted volcanic soils

Design Criteria Development

Numerical Model (Proof-of-concept)

Acknowledgments

- I wish to thank *Dr. Gabriele Chiaro*, *Prof. Thomas Wilson* and *Dr. Mark Stringer* for their significant support and guidance.
- I would like to thank *Mr. Siale Faitotonu, Dr. Sean Rees, Dr. Vineet Shah* and *Dr. Ali Tasalloti* for their valuable insights during lab testing.
- I also wish to acknowledge the financial support provided by Department of Civil and Natural Resources Engineering and Geological Sciences/DEVORA and QuakeCoRE (soil sampling).

