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Stereo Matching Generally

SM is finding correspondences between stereo images

Images are of the same scene

Captured simultaneously

Correspondences (‘disparity’) are used to estimate depth

SM is an ill-posed problem – can only make best guess

Impossible to perform ‘perfectly’ in general case



Stereo Matching Example I

(a) Left camera’s image (b) Right camera’s image

Figure 1: The popular ’Tsukuba’ example stereo matching images, so called because
they were created by researchers at the University of Tsukuba, Japan. They are
probably the most widely-used benchmark images in stereo matching.



Stereo Matching Example II

(a) Ground truth disparity map (b) Disparity map generated using a simple Belief
Propagation Stereo Matching implementation

Figure 2: The ground truth disparity map for the Tsukuba images, and an example of
a possible real disparity map produced by using Belief Propagation Stereo Matching.
The ground truth represents what would be expected if stereo matching could be
carried out ‘perfectly’.



Stereo Matching Example III
Figure 2b was generated using the program at https://github.
com/jcoo092/stereo-matching-practice/tree/master/rust

while the other three are from the Middlebury benchmarks image
sets [23] (see
https://vision.middlebury.edu/stereo/data/).

https://github.com/jcoo092/stereo-matching-practice/tree/master/rust
https://github.com/jcoo092/stereo-matching-practice/tree/master/rust
https://vision.middlebury.edu/stereo/data/


Stereo Matching Visualisation

Λ

Figure 3: The concept of basic stereo matching. A specific point in one image is
compared to points in the corresponding line in the other image, to decide which
points match to each other. The shift in position along the line is called the
‘disparity’. This disparity, when combined with some information about the cameras,
can be used to estimate the distance from the cameras to photographed objects. An
example simple comparison would be taking the absolute difference in pixel colours,
where the smallest difference implies the most likely match.
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Belief Propagation

BP is an approach to estimating marginal probabilities over
Markov Random Fields & similar [12]

Introduced by Pearl for inference over factor graphs [20]

Explicitly based around message passing

Nodes in graph ‘tell’ their neighbours their belief of the
likelihood of each state

Family of algorithms these days [3]



Belief Propagation for Stereo Matching

Adds ‘smoothness’ costs to ‘data’ costs

Early successful example of ‘global’ SM [23]

The hidden states of the MRF are the possible disparity values

Convergence in BP only guaranteed for trees

SM over images is on a grid – no guarantee of convergence

SM uses ‘Loopy Belief Propagation’ [26]

Stop after ‘convergence’, or arbitrary # of iterations (probably
converged?)



Belief Propagation Visualisation



So What?

Belief Propagation is explicitly based on the idea of individual
processing elements exchanging messages

Researchers’ implementations, however, do not resemble that

Usually, some nested for loops [11]

How about a message-passing-based programming approach?

Concurrent ML appears to be an almost-exact theoretical fit



Overlap

Computer
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Research Question

Can switching to a message-passing programming
style like Concurrent ML improve the
implementations of Belief Propagation and related
algorithms in some way, relative to the typical
imperative approach?



Hypothesised Potential Improvements

Time/memory efficiency

Correspondence between theory and code

Code ‘quality’

Use of all of available hardware resources

Algorithm scheduling

Scaling across hardware ‘sizes’

‘Future-proof’
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Concurrent ML
Originally created by Reppy for his PhD dissertation [22]

First implemented in Standard ML of New Jersey

Shared-memory only

Initially for concurrent but not parallel programming

Separate processing elements communicate via channels

Used successfully to create the eXene windowing system

Sadly, mostly forgotten now1

1But see “Concurrent ML - The One That Got Away” talk by Michael
Sperber at Code Mesh 2017 (on YouTube)



Concurrent ML Diagramatically



Message Passing I

Different from Actors [1] – CML is synchronous
communication by anonymous logical processing elements via
independent channels

CML builds upon Communicating Sequential Processes [18]

(In actuality, CML, Go and many others are arguably closer to
Pi Calculus [19] than CSP, but CML predates Pi Calculus, and
CSP is still the theoretical model that many languages refer to
as their inspiration for concurrency.)

Goes beyond CSP (and Go), however, with its ‘events’



Message Passing II
“Higher-order concurrent programming” (per Reppy)

Events make synchronisation a first-class value

Event combinators permit specification of abstracted protocols



Beyond Go?

Go has channels, and selection over channels

Channels fixed at compile time (modulo reflection)

CML has selection over dynamic list of channels

Go only has (blocking) send and receive

Send and receive events represent communication in potentia

CML is arguably a ‘superset’ of CSP



Some CML Types

Blocking:

send: (‘a chan * ‘a) -> unit

recv: ‘a chan -> ‘a

Non-Blocking:

sendEvt: (‘a chan * ‘a) -> unit event

recvEvt: ‘a chan -> ‘a event

Blocking:

sync: ‘a event -> ‘a



Event Combinators

wrap: Resolve input event, and then execute a supplied
function on the result

guard: Immediately prior to input event’s resolution, run
another supplied function and use result for resolving the event

withNack: Provide a second function for cancellation/if an
event is not selected

choose: Create a new event that represents the first event
from a list to become available

select: sync ◦ choose



Why not X?

More message passing models/libs/langs than just CML

CSP-derived – usually limited vs. CML

Actors – asynchronous, unbounded max memory

Reagents [28] – Join Calculus-based

Rendezvous (e.g. Ada, Eiffel’s SCOOP) – not channel-based
message passing (maybe splitting hairs)

All good future work targets (probably)
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Strict CML implementation requirements

Parallel CML – aiming for ’real-time’ stereo matching

‘Green threads’ or similar - distributes work automatically

Still maintained

Tail-call-optimisation/last-call-optimisation

Available for common Linux distributions

Supports AMD64 and ARM architectures



Nice-to-have CML implementation requirements

Ahead-of-time compilation/fast ‘standalone’ executables

Support for image file IO

Support for common image processing routines

Pre-existing stereo matching implementations available

Support for SIMD/data-parallel/GPU programming

C interop/Foreign Function Interface

Well-documented



Possibilities I
The ready-to-use options which meet all criteria:

Photo by Andrea Piacquadio from Pexels



Possibilities II
No language with CML support that meets all criteria

SML/NJ seems to be single-core only

A number of languages come close, including: Go; Clojure
with Core.Async library; Rust with Crossbeam crate (maybe
others); Crystal; Julia; Kotlin; C++ with various old libraries;
could go on...

All of these seem to stop at CSP (at best)

Not necessarily parallel, either

Many also fail to meet at least one other criterion



Possibilities with CML support I
If one accepts not meeting some criteria:

F# with Hopac library
(https://github.com/Hopac/Hopac)

Haskell with Control.Concurrent.CML [6] or Transactional
Events [8]

Guile Scheme (https://www.gnu.org/software/guile/)
with Fibers library (https://github.com/wingo/fibers)

Manticore [13]

MLton [30]

https://github.com/Hopac/Hopac
https://www.gnu.org/software/guile/
https://github.com/wingo/fibers


Possibilities with CML support II
OCaml with Events module (https://caml.inria.fr/pub/
docs/manual-ocaml/libref/Event.html) (see also [9])

Racket [10]

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html


Hopac

Tried out Hopac earlier

Compared CML with simple imperative nested-for-loops
approach for median filter [7]

Results were underwhelming, at best

20+ times slower than näıve imperative version

Turns out, maybe a memory leak (issues #192 & #201 at
https://github.com/Hopac/Hopac)

Not really maintained anymore, anyway

https://github.com/Hopac/Hopac


Hopac Comparative Results
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Näıve CML

3 131 4,527
5 288 11,006
7 549 21,210
9 899 34,587

11 1,361 56,196

Comparison of mean running time results in milliseconds between simple
nested-for-loop approach and Hopac for median filter implementations with varying
window sizes, on a ˜ 1 megapixel image



Elimination I
Hopac has issues

Haskell’s libraries are old and long unmaintained; research
prototypes only

Guile doesn’t do AOT compilation & standalone executables
(it looks like you might be able to write a program in Guile as
a library, and embed that in a dummy C program, but it
would probably still be relatively slow, and very awkward)

Manticore seems to be similar to MLton, but AMD64-only

MLton – selected



Elimination II
OCaml with Events library – single-core-only. Not clear if it
will work with Multicore OCaml, but if it does, would be
worth revisiting when MC-OCaml is officially released

Racket – selected



MLton

Somewhat-maintained, largely-stable SML variant

Includes a near-complete port of CML

Emits C, targets GCC backend, supports many architectures

Haphazardly documented

A handful of rough edges

Few extra libraries



Racket

Scheme LISP implementation – untyped & typed

Mostly re-implements CML in its ‘sync’ library

Reasonably well-documented

Active and (generally) friendly community

Wide array of libraries available

Doesn’t really do standalone executables (simply bundles core
runtime into executable – very large Hello World)



Racket’s Places

Racket’s favoured approach to parallelism differs from usual
task-stealing workpool approach

Racket uses Places [27]

Each place (roughly) corresponds to an OS thread

Spawn green threads to run atop a place

No automatic multiplexing across CPU cores

Sending messages to specific green threads on other Places
becomes a two-level process
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Comparative Benchmarks I

Assess running times, determine ‘fastest’ ‘language’

Implemented six exemplar test programs (See
https://github.com/jcoo092/CML_benchmarks):

Communications Time
Linear Algebra
Monte Carlo Pi
Selection Time
Spawn
Whispers

https://github.com/jcoo092/CML_benchmarks


Comparative Benchmarks II
Inspiration for some of them was taken from [5] (see also
https:

//github.com/kevin-chalmers/cpa-lang-shootout) and
[21]

Communications Time measures speed at enumerating natural
numbers via four threads in a specific arrangement

Linear algebra tests matrix/vector addition and multiplication
– Linear Algebra is used heavily in Computer Vision.

Monte Carlo Pi tests parallelism/multithreading effectiveness

https://github.com/kevin-chalmers/cpa-lang-shootout
https://github.com/kevin-chalmers/cpa-lang-shootout


Comparative Benchmarks III
Selection Time measures the time taken to ‘select’ over a list
of channels, when one side blocks awaiting communication
before the other offers on a randomly-selected channel

Spawn measures the time taken to create CML threads

Whispers measures message passing speed sans other
computation, using different communication topologies



Whispers I

Independently conceived, but done in the past

Intent was for three styles:

Ring – all threads arranged such that they receive from one
thread, and send to another, forming a logical ring
Grid – Threads are arranged in a logical grid, and exchange
messages with their ‘neighbours’ above, below and to the left
and right
Kn (aka all-to-all) – all threads send and receive to every other
thread, as on a complete graph

Racket’s Places make this awkward to implement



Whispers II
Only implemented Ring in Racket, so only tested Ring on
both Racket and MLton

Other two are certainly possible, but were expected at the
time to be overly lengthy to program

The other two were nevertheless implemented in MLton



Experimental Process
Assumption of long-running program. E.g. robot running
stereo matching continuously as part of vision system

Run in a virtual machine

Automated with a Makefile

Input & output on command line

Timings collected using hyperfine2

Vary number of iterations to perform, and problem size

Hyperfine stores results in files for analysis
2https://github.com/sharkdp/hyperfine

https://github.com/sharkdp/hyperfine


Running Time Data Processing I

At least 10 runs per test instance

Removed detected outliers

Focused on average, probably reflects ‘real’ running times for
an ongoing process

Used minimum value for each test & language as a baseline

In theory, baseline represents the best estimate of the actual
unavoidable program start-up/finish overhead, meaning
further running time is actual relevant work



Running Time Data Processing II
Baseline subtracted from all other test results

Should (hopefully) help to avoid bias unrelated to specific test



Results Box & Whisker Plots 1
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Results Box & Whisker Plots 2
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Threats to Validity I

Take results with pinch of salt

Unfamiliar with tested languages before start of this work

Not necessarily representative of the capabilities of each
language for an expert

Does provide a test of how easy it is to get fast programs
from each language when previously unfamiliar with it

First execution usually slower than others (?)



Threats to Validity II
(Even though three warm up runs were used at the beginning
of each test)

Linear Algebra wasn’t necessarily optimal – Racket has a
third-party wrapper over BLAS. Not used to avoid biasing the
results against MLton.



There’s a Catch...

MLton outperforms Racket (both typed and untyped) on all
but two benchmarks: Selection and Monte Carlo Pi

MCP tests parallelism capabilities of the language

MCP tests show that the MLton program is very fast, but gets
slower the more threads are used in the program – even with 2

Turns out MLton is single-core-only. Confirmed by monitoring
CPU use in htop and via MLton mailing list

MultiMLton [24] – now dead and buried



Here’s Another One...

Racket’s Places make a ‘direct’ BP approach awkward

Places were retrofitted onto a sequential language

Rumours (unconfirmed) in Racket community that Places
scale poorly beyond 8 or so cores

Message passing in Places is also relatively slow [27] – for
sharing memory, not so much for communications-heavy
programs

Racket perhaps less-than-ideal for testing CML BP



Where to Now?

MLton is a fairly good implementation of SML

Lack of multithreading makes it out-of-scope for this work

Manticore is (roughly) another SML implementation

Manticore comes with parallel CML built-in

Obvious next choice

Probably not even too hard to port MLton to Manticore



Manticore

Research language, also created by Reppy & co in late 2000s

Standard ML-esque (non-compliant with SML standard)

Explicitly for testing parallelism designs

Includes a parallel implementation of CML

Also, parallel tuples and parallel arrays + array
comprehensions

Reppy & co implemented just enough for research goals



Challenges with Manticore I

Porting from MLton proving more difficult than anticipated

No ready-to-run installer, build from source instead

Needed to adapt a Dockerfile from one of the researchers

Missing parts of SML Basis (aka standard) library

Almost no documentation – relying on reading source, plus
some exemplar benchmark programs and trial & error

Monte Carlo Pi is parallel, but large fixed time jump

Benchmarks still work-in-progress currently
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CML & BP: A good fit?

Haven’t actually been able to investigate this yet...

Progress much slower than hoped/anticipated

Lost considerable time to the various language issues

Also been working on other things (not presented here)

Earlier Hopac work gives possible indication

Will need to complete project in Racket and/or Manticore
before making final judgement



Refined Hypotheses

CML approach will be less time/memory efficient with respect
to heavily numerical computation, as in Computer Vision

Much closer to the theory, however

Maybe better code quality (?)

Also, better scalability over multiple cores

I.e. More future-proof than traditional implementations of
Belief Propagation – thread multiplexing implies good scaling
over cores

Lack of global synchronisation keeps system running



Sliding Scale I

Issue of granularity

One thread per disparity map pixel?

Traditional approach is arguably 1 thread per image

Continuum of # of pixels per thread

Where is the ‘sweet spot’?

One thread per pixel, or one thread per map, arguably at
extremes of continuum

Intra- and inter-thread communications



Sliding Scale II
How would a parallel for loop (as likely the simplest
approach to introduce parallelism to an existing
implementation) fit with this?

Scope for task parallelism and data parallelism

Optimal number of pixels per thread almost certainly will be
at least enough to fill registers for vector/SIMD instructions
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Summary I

Stereo matching: correspondences between two or more
images of the same scene

Using correspondences/‘disparity’ information about cameras
used, can estimate depth to objects in the scene

Belief Propagation based on message-passing on a graph – in
SM, the nodes are (essentially) pixels in an output image

Concurrent ML seems like a clear theoretical fit to BP

Investigated CML options



Summary II
Turns out there are few usable ones out there now

No ‘ideal’ candidate

Had tried F# + Hopac earlier – poor performance, possible
memory leak

Decided to test out MLton and Racket

MLton much faster than Racket, but actually not parallel

Changed focus to Manticore

Language issues have slowed work



Summary III
Haven’t yet tested BP + CML

Suspect it will be slower than usual implementations

Code will be closer to theory, though

Quite possibly will scale to manycore better too

Optimum probably between extremes

Results may vary heavily between implementations
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Future Directions

Refine design of benchmark programs

Improve experiment design

More CML implementations & host languages [2, 25, 31]

Other message-passing/rendezvous models [4, 29]

Other base algorithms, e.g. Semi-global Matching [15, 17],
Concurrent Propagation [14]

How to ‘fake’ message passing in shared-memory? [16]

Other hardware, e.g. GPUs, Intel CPUs’ TGX instructions
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