
24 November 2020

An ideal match?
Investigating how well-suited Concurrent ML is to
implementing Belief Propagation for Stereo
Matching

James Cooper
jcoo092@aucklanduni.ac.nz

Outline I
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Stereo Matching Generally

SM is finding correspondences between stereo images

Images are of the same scene

Captured simultaneously

Correspondences (‘disparity’) are used to estimate depth

SM is an ill-posed problem – can only make best guess

Impossible to perform ‘perfectly’ in general case

Stereo Matching Example I

(a) Left camera’s image (b) Right camera’s image

Figure 1: The popular ’Tsukuba’ example stereo matching images, so called because
they were created by researchers at the University of Tsukuba, Japan. They are
probably the most widely-used benchmark images in stereo matching.

Stereo Matching Example II

(a) Ground truth disparity map (b) Disparity map generated using a simple Belief
Propagation Stereo Matching implementation

Figure 2: The ground truth disparity map for the Tsukuba images, and an example of
a possible real disparity map produced by using Belief Propagation Stereo Matching.
The ground truth represents what would be expected if stereo matching could be
carried out ‘perfectly’.

Stereo Matching Example III
Figure 2b was generated using the program at https://github.
com/jcoo092/stereo-matching-practice/tree/master/rust

while the other three are from the Middlebury benchmarks image
sets [23] (see
https://vision.middlebury.edu/stereo/data/).

https://github.com/jcoo092/stereo-matching-practice/tree/master/rust
https://github.com/jcoo092/stereo-matching-practice/tree/master/rust
https://vision.middlebury.edu/stereo/data/

Stereo Matching Visualisation

Λ

Figure 3: The concept of basic stereo matching. A specific point in one image is
compared to points in the corresponding line in the other image, to decide which
points match to each other. The shift in position along the line is called the
‘disparity’. This disparity, when combined with some information about the cameras,
can be used to estimate the distance from the cameras to photographed objects. An
example simple comparison would be taking the absolute difference in pixel colours,
where the smallest difference implies the most likely match.

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Belief Propagation

BP is an approach to estimating marginal probabilities over
Markov Random Fields & similar [12]

Introduced by Pearl for inference over factor graphs [20]

Explicitly based around message passing

Nodes in graph ‘tell’ their neighbours their belief of the
likelihood of each state

Family of algorithms these days [3]

Belief Propagation for Stereo Matching

Adds ‘smoothness’ costs to ‘data’ costs

Early successful example of ‘global’ SM [23]

The hidden states of the MRF are the possible disparity values

Convergence in BP only guaranteed for trees

SM over images is on a grid – no guarantee of convergence

SM uses ‘Loopy Belief Propagation’ [26]

Stop after ‘convergence’, or arbitrary # of iterations (probably
converged?)

Belief Propagation Visualisation

So What?

Belief Propagation is explicitly based on the idea of individual
processing elements exchanging messages

Researchers’ implementations, however, do not resemble that

Usually, some nested for loops [11]

How about a message-passing-based programming approach?

Concurrent ML appears to be an almost-exact theoretical fit

Overlap

Computer

 Vision

Programming

 Languages

Concurrent

 ML

 Belief

Propagation

Research Question

Can switching to a message-passing programming
style like Concurrent ML improve the
implementations of Belief Propagation and related
algorithms in some way, relative to the typical
imperative approach?

Hypothesised Potential Improvements

Time/memory efficiency

Correspondence between theory and code

Code ‘quality’

Use of all of available hardware resources

Algorithm scheduling

Scaling across hardware ‘sizes’

‘Future-proof’

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Concurrent ML
Originally created by Reppy for his PhD dissertation [22]

First implemented in Standard ML of New Jersey

Shared-memory only

Initially for concurrent but not parallel programming

Separate processing elements communicate via channels

Used successfully to create the eXene windowing system

Sadly, mostly forgotten now1

1But see “Concurrent ML - The One That Got Away” talk by Michael
Sperber at Code Mesh 2017 (on YouTube)

Concurrent ML Diagramatically

Message Passing I

Different from Actors [1] – CML is synchronous
communication by anonymous logical processing elements via
independent channels

CML builds upon Communicating Sequential Processes [18]

(In actuality, CML, Go and many others are arguably closer to
Pi Calculus [19] than CSP, but CML predates Pi Calculus, and
CSP is still the theoretical model that many languages refer to
as their inspiration for concurrency.)

Goes beyond CSP (and Go), however, with its ‘events’

Message Passing II
“Higher-order concurrent programming” (per Reppy)

Events make synchronisation a first-class value

Event combinators permit specification of abstracted protocols

Beyond Go?

Go has channels, and selection over channels

Channels fixed at compile time (modulo reflection)

CML has selection over dynamic list of channels

Go only has (blocking) send and receive

Send and receive events represent communication in potentia

CML is arguably a ‘superset’ of CSP

Some CML Types

Blocking:

send: (‘a chan * ‘a) -> unit

recv: ‘a chan -> ‘a

Non-Blocking:

sendEvt: (‘a chan * ‘a) -> unit event

recvEvt: ‘a chan -> ‘a event

Blocking:

sync: ‘a event -> ‘a

Event Combinators

wrap: Resolve input event, and then execute a supplied
function on the result

guard: Immediately prior to input event’s resolution, run
another supplied function and use result for resolving the event

withNack: Provide a second function for cancellation/if an
event is not selected

choose: Create a new event that represents the first event
from a list to become available

select: sync ◦ choose

Why not X?

More message passing models/libs/langs than just CML

CSP-derived – usually limited vs. CML

Actors – asynchronous, unbounded max memory

Reagents [28] – Join Calculus-based

Rendezvous (e.g. Ada, Eiffel’s SCOOP) – not channel-based
message passing (maybe splitting hairs)

All good future work targets (probably)

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Strict CML implementation requirements

Parallel CML – aiming for ’real-time’ stereo matching

‘Green threads’ or similar - distributes work automatically

Still maintained

Tail-call-optimisation/last-call-optimisation

Available for common Linux distributions

Supports AMD64 and ARM architectures

Nice-to-have CML implementation requirements

Ahead-of-time compilation/fast ‘standalone’ executables

Support for image file IO

Support for common image processing routines

Pre-existing stereo matching implementations available

Support for SIMD/data-parallel/GPU programming

C interop/Foreign Function Interface

Well-documented

Possibilities I
The ready-to-use options which meet all criteria:

Photo by Andrea Piacquadio from Pexels

Possibilities II
No language with CML support that meets all criteria

SML/NJ seems to be single-core only

A number of languages come close, including: Go; Clojure
with Core.Async library; Rust with Crossbeam crate (maybe
others); Crystal; Julia; Kotlin; C++ with various old libraries;
could go on...

All of these seem to stop at CSP (at best)

Not necessarily parallel, either

Many also fail to meet at least one other criterion

Possibilities with CML support I
If one accepts not meeting some criteria:

F# with Hopac library
(https://github.com/Hopac/Hopac)

Haskell with Control.Concurrent.CML [6] or Transactional
Events [8]

Guile Scheme (https://www.gnu.org/software/guile/)
with Fibers library (https://github.com/wingo/fibers)

Manticore [13]

MLton [30]

https://github.com/Hopac/Hopac
https://www.gnu.org/software/guile/
https://github.com/wingo/fibers

Possibilities with CML support II
OCaml with Events module (https://caml.inria.fr/pub/
docs/manual-ocaml/libref/Event.html) (see also [9])

Racket [10]

https://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html
https://caml.inria.fr/pub/docs/manual-ocaml/libref/Event.html

Hopac

Tried out Hopac earlier

Compared CML with simple imperative nested-for-loops
approach for median filter [7]

Results were underwhelming, at best

20+ times slower than näıve imperative version

Turns out, maybe a memory leak (issues #192 & #201 at
https://github.com/Hopac/Hopac)

Not really maintained anymore, anyway

https://github.com/Hopac/Hopac

Hopac Comparative Results

3 5 7 9 11

0

2

4

6
·104

CML
Näıve

Näıve CML

3 131 4,527
5 288 11,006
7 549 21,210
9 899 34,587

11 1,361 56,196

Comparison of mean running time results in milliseconds between simple
nested-for-loop approach and Hopac for median filter implementations with varying
window sizes, on a ˜ 1 megapixel image

Elimination I
Hopac has issues

Haskell’s libraries are old and long unmaintained; research
prototypes only

Guile doesn’t do AOT compilation & standalone executables
(it looks like you might be able to write a program in Guile as
a library, and embed that in a dummy C program, but it
would probably still be relatively slow, and very awkward)

Manticore seems to be similar to MLton, but AMD64-only

MLton – selected

Elimination II
OCaml with Events library – single-core-only. Not clear if it
will work with Multicore OCaml, but if it does, would be
worth revisiting when MC-OCaml is officially released

Racket – selected

MLton

Somewhat-maintained, largely-stable SML variant

Includes a near-complete port of CML

Emits C, targets GCC backend, supports many architectures

Haphazardly documented

A handful of rough edges

Few extra libraries

Racket

Scheme LISP implementation – untyped & typed

Mostly re-implements CML in its ‘sync’ library

Reasonably well-documented

Active and (generally) friendly community

Wide array of libraries available

Doesn’t really do standalone executables (simply bundles core
runtime into executable – very large Hello World)

Racket’s Places

Racket’s favoured approach to parallelism differs from usual
task-stealing workpool approach

Racket uses Places [27]

Each place (roughly) corresponds to an OS thread

Spawn green threads to run atop a place

No automatic multiplexing across CPU cores

Sending messages to specific green threads on other Places
becomes a two-level process

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Comparative Benchmarks I

Assess running times, determine ‘fastest’ ‘language’

Implemented six exemplar test programs (See
https://github.com/jcoo092/CML_benchmarks):

Communications Time
Linear Algebra
Monte Carlo Pi
Selection Time
Spawn
Whispers

https://github.com/jcoo092/CML_benchmarks

Comparative Benchmarks II
Inspiration for some of them was taken from [5] (see also
https:

//github.com/kevin-chalmers/cpa-lang-shootout) and
[21]

Communications Time measures speed at enumerating natural
numbers via four threads in a specific arrangement

Linear algebra tests matrix/vector addition and multiplication
– Linear Algebra is used heavily in Computer Vision.

Monte Carlo Pi tests parallelism/multithreading effectiveness

https://github.com/kevin-chalmers/cpa-lang-shootout
https://github.com/kevin-chalmers/cpa-lang-shootout

Comparative Benchmarks III
Selection Time measures the time taken to ‘select’ over a list
of channels, when one side blocks awaiting communication
before the other offers on a randomly-selected channel

Spawn measures the time taken to create CML threads

Whispers measures message passing speed sans other
computation, using different communication topologies

Whispers I

Independently conceived, but done in the past

Intent was for three styles:

Ring – all threads arranged such that they receive from one
thread, and send to another, forming a logical ring
Grid – Threads are arranged in a logical grid, and exchange
messages with their ‘neighbours’ above, below and to the left
and right
Kn (aka all-to-all) – all threads send and receive to every other
thread, as on a complete graph

Racket’s Places make this awkward to implement

Whispers II
Only implemented Ring in Racket, so only tested Ring on
both Racket and MLton

Other two are certainly possible, but were expected at the
time to be overly lengthy to program

The other two were nevertheless implemented in MLton

Experimental Process
Assumption of long-running program. E.g. robot running
stereo matching continuously as part of vision system

Run in a virtual machine

Automated with a Makefile

Input & output on command line

Timings collected using hyperfine2

Vary number of iterations to perform, and problem size

Hyperfine stores results in files for analysis
2https://github.com/sharkdp/hyperfine

https://github.com/sharkdp/hyperfine

Running Time Data Processing I

At least 10 runs per test instance

Removed detected outliers

Focused on average, probably reflects ‘real’ running times for
an ongoing process

Used minimum value for each test & language as a baseline

In theory, baseline represents the best estimate of the actual
unavoidable program start-up/finish overhead, meaning
further running time is actual relevant work

Running Time Data Processing II
Baseline subtracted from all other test results

Should (hopefully) help to avoid bias unrelated to specific test

Results Box & Whisker Plots 1

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Ti
m

e
[s

]

Commstime

0.0

0.1

0.2

0.3

0.4

Ti
m

e
[s

]

Linear Algebra (Matrix)

0.0

0.2

0.4

0.6

0.8

1.0

Ti
m

e
[s

]

Monte Carlo Pi

Results Box & Whisker Plots 2

0.00

0.25

0.50

0.75

1.00

1.25

1.50

Ti
m

e
[s

]

Select Time

0

5

10

15

20

25

Ti
m

e
[s

]

Spawn

0.0

0.2

0.4

0.6

0.8

Ti
m

e
[s

]

Whispers (Ring)

Threats to Validity I

Take results with pinch of salt

Unfamiliar with tested languages before start of this work

Not necessarily representative of the capabilities of each
language for an expert

Does provide a test of how easy it is to get fast programs
from each language when previously unfamiliar with it

First execution usually slower than others (?)

Threats to Validity II
(Even though three warm up runs were used at the beginning
of each test)

Linear Algebra wasn’t necessarily optimal – Racket has a
third-party wrapper over BLAS. Not used to avoid biasing the
results against MLton.

There’s a Catch...

MLton outperforms Racket (both typed and untyped) on all
but two benchmarks: Selection and Monte Carlo Pi

MCP tests parallelism capabilities of the language

MCP tests show that the MLton program is very fast, but gets
slower the more threads are used in the program – even with 2

Turns out MLton is single-core-only. Confirmed by monitoring
CPU use in htop and via MLton mailing list

MultiMLton [24] – now dead and buried

Here’s Another One...

Racket’s Places make a ‘direct’ BP approach awkward

Places were retrofitted onto a sequential language

Rumours (unconfirmed) in Racket community that Places
scale poorly beyond 8 or so cores

Message passing in Places is also relatively slow [27] – for
sharing memory, not so much for communications-heavy
programs

Racket perhaps less-than-ideal for testing CML BP

Where to Now?

MLton is a fairly good implementation of SML

Lack of multithreading makes it out-of-scope for this work

Manticore is (roughly) another SML implementation

Manticore comes with parallel CML built-in

Obvious next choice

Probably not even too hard to port MLton to Manticore

Manticore

Research language, also created by Reppy & co in late 2000s

Standard ML-esque (non-compliant with SML standard)

Explicitly for testing parallelism designs

Includes a parallel implementation of CML

Also, parallel tuples and parallel arrays + array
comprehensions

Reppy & co implemented just enough for research goals

Challenges with Manticore I

Porting from MLton proving more difficult than anticipated

No ready-to-run installer, build from source instead

Needed to adapt a Dockerfile from one of the researchers

Missing parts of SML Basis (aka standard) library

Almost no documentation – relying on reading source, plus
some exemplar benchmark programs and trial & error

Monte Carlo Pi is parallel, but large fixed time jump

Benchmarks still work-in-progress currently

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

CML & BP: A good fit?

Haven’t actually been able to investigate this yet...

Progress much slower than hoped/anticipated

Lost considerable time to the various language issues

Also been working on other things (not presented here)

Earlier Hopac work gives possible indication

Will need to complete project in Racket and/or Manticore
before making final judgement

Refined Hypotheses

CML approach will be less time/memory efficient with respect
to heavily numerical computation, as in Computer Vision

Much closer to the theory, however

Maybe better code quality (?)

Also, better scalability over multiple cores

I.e. More future-proof than traditional implementations of
Belief Propagation – thread multiplexing implies good scaling
over cores

Lack of global synchronisation keeps system running

Sliding Scale I

Issue of granularity

One thread per disparity map pixel?

Traditional approach is arguably 1 thread per image

Continuum of # of pixels per thread

Where is the ‘sweet spot’?

One thread per pixel, or one thread per map, arguably at
extremes of continuum

Intra- and inter-thread communications

Sliding Scale II
How would a parallel for loop (as likely the simplest
approach to introduce parallelism to an existing
implementation) fit with this?

Scope for task parallelism and data parallelism

Optimal number of pixels per thread almost certainly will be
at least enough to fill registers for vector/SIMD instructions

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Summary I

Stereo matching: correspondences between two or more
images of the same scene

Using correspondences/‘disparity’ information about cameras
used, can estimate depth to objects in the scene

Belief Propagation based on message-passing on a graph – in
SM, the nodes are (essentially) pixels in an output image

Concurrent ML seems like a clear theoretical fit to BP

Investigated CML options

Summary II
Turns out there are few usable ones out there now

No ‘ideal’ candidate

Had tried F# + Hopac earlier – poor performance, possible
memory leak

Decided to test out MLton and Racket

MLton much faster than Racket, but actually not parallel

Changed focus to Manticore

Language issues have slowed work

Summary III
Haven’t yet tested BP + CML

Suspect it will be slower than usual implementations

Code will be closer to theory, though

Quite possibly will scale to manycore better too

Optimum probably between extremes

Results may vary heavily between implementations

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

Future Directions

Refine design of benchmark programs

Improve experiment design

More CML implementations & host languages [2, 25, 31]

Other message-passing/rendezvous models [4, 29]

Other base algorithms, e.g. Semi-global Matching [15, 17],
Concurrent Propagation [14]

How to ‘fake’ message passing in shared-memory? [16]

Other hardware, e.g. GPUs, Intel CPUs’ TGX instructions

Acknowledgements
Thanks must firstly be given to my supervisors, Dr Radu Nicolescu and Assoc-Prof Patrice Delmas of the School of
Computer Science at the University of Auckland. Beyond them, other people who have been notably helpful to me
(mostly through the MLton and Manticore mailing lists, and the Racket Slack workspace) at some point through
the course of this work include: Lars Bergstrom; Kevin Chalmers; Kavon Farvadin; Matthew Flatt; Matthew Fluet;
Suresh Jagannathan; Laurent Orseau; Alex Potanin; Ivan Raikov; Yawar Raza; John Reppy; Bhargav Shivkumar;
KC Sivaramakrishnan; Jens Axel Søgaard; Sam Tobin-Hochstadt; Lukasz Ziarek; and undoubtedly others who I
have missed (my apologies!).
Thank you to all of you!

Outline
1 Stereo Matching

Generic Stereo Matching
Belief Propagation

2 Concurrent ML
Overview
Investigation of Alternatives
Comparative Benchmarks

3 Concurrent ML and Belief Propagation

4 Conclusion
Recapitulation
Prognostication

5 References

References I
[1] Gul A Agha. ACTORS : a model of concurrent computation in distributed

systems. MIT Press series in artificial intelligence. Cambridge, Mass.: MIT
Press, 1986, p. 190.

[2] V. Allombert, F. Gava and J. Tesson. ‘Multi-ML: Programming Multi-BSP
Algorithms in ML’. In: International Journal of Parallel Programming 45.2
(2017), pp. 340–361. doi: 10.1007/s10766-016-0417-6.

[3] Andrew Blake, Pushmeet Kohli and Carsten Rother, eds. Markov Random
Fields for Vision and Image Processing. Cambridge, Mass.: The MIT Press,
2011. doi: 10.7551/mitpress/8579.001.0001.

[4] Frank De Boer et al. ‘A Survey of Active Object Languages’. In: ACM
Computing Surveys 50.5 (Oct. 2017), pp. 1–39. doi: 10.1145/3122848.

[5] Kevin Chalmers. ‘What are Communicating Process Architectures? Towards a
Framework for Evaluating Message-passing Concurrency Languages’. In:
Communicating Process Architectures 2017. Ed. by J. B. Pedersen et al. IOS
Press, 2017, pp. 225–252.

https://doi.org/10.1007/s10766-016-0417-6
https://doi.org/10.7551/mitpress/8579.001.0001
https://doi.org/10.1145/3122848

References II
[6] Avik Chaudhuri. ‘A concurrent ML library in concurrent Haskell’. In: ACM

SIGPLAN Notices 44.9 (2009), pp. 269–280. doi: 10.1145/1596550.1596589.

[7] James Cooper. ‘Concurrent ML as an Alternative Parallel Programming Style
for Image Processing’. In: 2018 International Conference on Image and Vision
Computing New Zealand (IVCNZ). Vol. 2018-Novem. Auckland, New Zealand:
IEEE, Nov. 2018, pp. 1–6. doi: 10.1109/IVCNZ.2018.8634712.

[8] KEVIN DONNELLY and MATTHEW FLUET. ‘Transactional Events’. In:
Journal of Functional Programming 18.5-6 (2008), pp. 649–706. doi:
10.1017/s0956796808006916.

[9] Laura Effinger-Dean, Matthew Kehrt and Dan Grossman. ‘Transactional events
for ML’. In: ACM SIGPLAN Notices 43.9 (2008), pp. 103–114. doi:
10.1145/1411204.1411222.

[10] Matthias Felleisen et al. ‘The racket manifesto’. In: Leibniz International
Proceedings in Informatics, LIPIcs. Vol. 32. Dagstuhl, Germany: Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2015, pp. 113–128. doi:
10.4230/LIPIcs.SNAPL.2015.113.

https://doi.org/10.1145/1596550.1596589
https://doi.org/10.1109/IVCNZ.2018.8634712
https://doi.org/10.1017/s0956796808006916
https://doi.org/10.1145/1411204.1411222
https://doi.org/10.4230/LIPIcs.SNAPL.2015.113

References III
[11] Pedro F. Felzenszwalb and Daniel P. Huttenlocher. ‘Efficient Belief Propagation

for Early Vision’. In: International Journal of Computer Vision 70.1 (Oct.
2006), pp. 41–54. doi: 10.1007/s11263-006-7899-4.

[12] Pedro F. Felzenszwalb and Ramin Zabih. ‘Dynamic Programming and Graph
Algorithms in Computer Vision’. In: IEEE Transactions on Pattern Analysis and
Machine Intelligence 33.4 (Apr. 2011), pp. 721–740. doi:
10.1109/TPAMI.2010.135.

[13] Matthew Fluet. ‘The manticore project’. In: Proceedings of the 2nd ACM
SIGPLAN workshop on Functional high-performance computing - FHPC ’13.
New York, New York, USA: ACM Press, 2013, p. 1. doi:
10.1145/2502323.2508150.

[14] Georgy Gimel’Farb et al. ‘Concurrent propagation for solving ill-posed problems
of global discrete optimisation’. In: Proceedings - International Conference on
Pattern Recognition. Icpr. Tsukuba, Japan: IEEE, 2012, pp. 1864–1867.

https://doi.org/10.1007/s11263-006-7899-4
https://doi.org/10.1109/TPAMI.2010.135
https://doi.org/10.1145/2502323.2508150

References IV
[15] Rui Gong, Georgy Gimel’farb and Patrice Delmas. ‘Semi-global stereo matching

under large and spatially variant perceptive deviations’. In: 2015 International
Conference on Image and Vision Computing New Zealand (IVCNZ).
Vol. 2016-Novem. 1. IEEE, Nov. 2015, pp. 1–6. doi:
10.1109/IVCNZ.2015.7761553.

[16] Raphael Hiesgen, Dominik Charousset and Thomas C. Schmidt. ‘OpenCL
Actors – Adding Data Parallelism to Actor-Based Programming with CAF’. In:
Lecture Notes in Computer Science (including subseries Lecture Notes in
Artificial Intelligence and Lecture Notes in Bioinformatics). Ed. by
Alessandro Ricci and Philipp Haller. Vol. 10789. Lecture Notes in Computer
Science. Cham: Springer International Publishing, 2018, pp. 59–93. doi:
10.1007/978-3-030-00302-9.

[17] Heiko Hirschmüller. ‘Stereo processing by semiglobal matching and mutual
information’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 30.2 (Feb. 2008), pp. 328–341. doi: 10.1109/TPAMI.2007.1166.
arXiv: 1607.08085.

https://doi.org/10.1109/IVCNZ.2015.7761553
https://doi.org/10.1007/978-3-030-00302-9
https://doi.org/10.1109/TPAMI.2007.1166
https://arxiv.org/abs/1607.08085

References V
[18] Charles Antony Richard Hoare. Communicating sequential processes.

Prentice-Hall international series in computer science. Englewood Cliffs, N.J.:
Prentice/Hall International, 1985, p. 256.

[19] Robin Milner. ‘Elements of Interaction: Turing Award Lecture’. In:
Communications of the ACM 36.1 (Jan. 1993), pp. 78–89. doi:
10.1145/151233.151240.

[20] Judea Pearl. ‘Reverend Bayes on inference engines: A distributed hierarchical
approach’. In: Proceedings of the AAAI National Conference on AI (1982),
pp. 133–136.

[21] John Reppy, Claudio V. Russo and Yingqi Xiao. ‘Parallel concurrent ML’. In:
ACM SIGPLAN Notices 44.9 (Aug. 2009), pp. 257–268. doi:
10.1145/1631687.1596588.

[22] John H. Reppy. Concurrent Programming in ML. New York, New York, USA:
Cambridge University Press, 2007, p. 308.

https://doi.org/10.1145/151233.151240
https://doi.org/10.1145/1631687.1596588

References VI
[23] Daniel Scharstein and Richard Szeliski. ‘A Taxonomy and Evaluation of Dense

Two-Frame Stereo Correspondence Algorithms’. In: International Journal of
Computer Vision 47.1 (Apr. 2002), pp. 7–42. doi: 10.1023/A:1014573219977.

[24] K. C. SIVARAMAKRISHNAN, LUKASZ ZIAREK and
SURESH JAGANNATHAN. ‘MultiMLton: A multicore-aware runtime for
standard ML’. In: Journal of Functional Programming 24.6 (Nov. 2014),
pp. 613–674. doi: 10.1017/S0956796814000161.

[25] KC Sivaramakrishnan et al. ‘Lightweight asynchrony using parasitic threads’. In:
Proceedings of the 5th ACM SIGPLAN workshop on Declarative aspects of
multicore programming - DAMP ’10. New York, New York, USA: ACM Press,
2010, p. 63. doi: 10.1145/1708046.1708059.

[26] Jian Sun, Nan Ning Zheng and Heung Yeung Shum. ‘Stereo matching using
belief propagation’. In: IEEE Transactions on Pattern Analysis and Machine
Intelligence 25.7 (July 2003), pp. 787–800. doi:
10.1109/TPAMI.2003.1206509.

https://doi.org/10.1023/A:1014573219977
https://doi.org/10.1017/S0956796814000161
https://doi.org/10.1145/1708046.1708059
https://doi.org/10.1109/TPAMI.2003.1206509

References VII
[27] Kevin Tew et al. ‘Places: Adding Message-Passing Parallelism to Racket’. In:

ACM SIGPLAN Notices 47.2 (Mar. 2012), pp. 85–96. doi:
10.1145/2168696.2047860.

[28] Aaron Turon. ‘Reagents’. In: ACM SIGPLAN Notices 47.6 (Aug. 2012),
pp. 157–168. doi: 10.1145/2345156.2254084.

[29] Carlos A Varela. Programming Distributed Computing Systems : A
Foundational Approach. Cambridge, Mass.: MIT Press, 2013, p. 296.

[30] Stephen Weeks. ‘Whole-program compilation in MLton’. In: Proceedings of the
2006 workshop on ML - ML ’06. New York, New York, USA: ACM Press, 2006,
pp. 1–1. doi: 10.1145/1159876.1159877.

[31] Lukasz Ziarek and Suresh Jagannathan. Featherweight Threads for
Communication Featherweight Threads for Communication. Tech. rep. Purdue
University, Oct. 2011.

https://doi.org/10.1145/2168696.2047860
https://doi.org/10.1145/2345156.2254084
https://doi.org/10.1145/1159876.1159877

	Stereo Matching
	Generic Stereo Matching
	Belief Propagation

	Concurrent ML
	Overview
	Investigation of Alternatives
	Comparative Benchmarks

	Concurrent ML and Belief Propagation
	Conclusion
	Recapitulation
	Prognostication

	References
	References

