Traffic Flow Estimation Based on Deep Learning for Emergency Traffic Management using CCTV Images

By : Rangika Nilani (R.Nilani@massey.ac.nz)

Supervisors : Dr Raj Prasanna, Massey University Dr Kristin Stock, Massey University Dr Emma Hudson-Doyle, Massey University Professor David Johnston, Massey University

R.Nilani@massey.ac.nz

NZRSE 2020

< ロ > < 同 > < 回 > < 回 >

Emergency Traffic Management

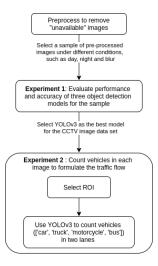
- Emergency Traffic Management (ETM) is one of the main problems in smart urban cities
- The causes of traffic emergencies can be small-scale (e.g., vehicle crash) or large-scale (e.g., earthquake or tsunami)
- They can also be planned (e.g., scheduled maintenance, noticed evacuation before a disaster) or unplanned

Traffic Flow Estimation

- Identification of traffic flow is the first step in consolidated planning of managing traffic emergencies
- Typically performed by underground inductive-loops, pneumatic road tubes, and temporary manual counts
- These methods can not be used in large areas because of high cost, damages to road surface and difficulties of installation
- Today, CCTV systems are extremely common and mounted in many public areas to support real-time monitoring
- CCTV data can be used as the foundation for accurate traffic flow estimation

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Traffic Flow Estimation Problem


The *traffic flow estimation* is identifying the number of vehicles during the t^{th} time interval at the i^{th} observation location in a transportation network which can be denoted as X_i^t

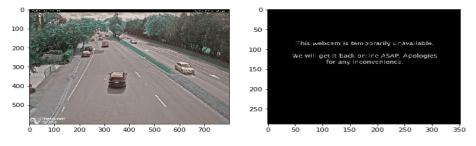
Research Questions

- What object detection algorithm is best suited to the CCTV image data set for vehicle detection?
- Can traffic flow be estimated by counting the number of vehicles in CCTV images using an object detection algorithm?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Methodology

Figure: Methodology

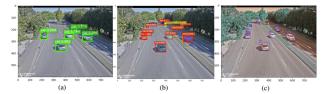

			c.nz

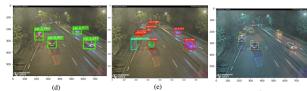
NZRSE 2020

・ロト ・四ト ・ヨト ・ヨト

Dataset

- CCTV image data set from NZTA traffic cameras API from 10th of October to 31st of October 2019 in Christchurch CBD
- Location : "West along Yaldhurst Rd from Curletts Rd" (latitude -43.53074, longitude 172.56812)
- Size : 1.6 GB


< ロ > < 同 > < 回 > < 回 >


Dataset Cont.

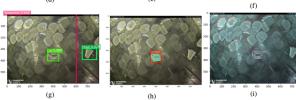

Total number of images before pre-processing	24, 085
Total number of unavailable images	1, 519
Total number of images after pre-processing	22, 566

Table: Dataset before and after pre-processing

RQ1 - Experiment 1

R.Nilani@massey.ac.nz

NZRSE 2020

크

-

Experimental Results - Experiment 1

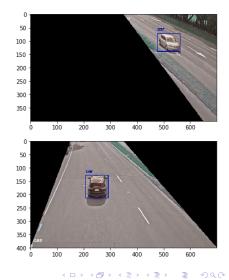
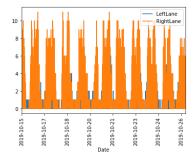

Model	Performance/ mean time taken to de- tect vehicles (seconds)	Recall	Precision
YOLOv3	0.86	0.79	0.96
faster R-CNN	8.37	0.50	0.96
mask R-CNN	55.6	0.69	0.77

Table: Performance and accuracy of the three models for our CCTV data set

イロト イヨト イヨト イヨト

RQ2 - Experiment 2


Algorithm 1 ROI selection as a trapezium
1: for $i \in I$ do
$y_{size}, x_{size} = i.shape[: 2]$
$vert_coef = 0.3333$
$hor_coef = 0.312$
v_coef = vert_coef
$up_left_coef = hor_coef$
$up_right_coef = 1 - up_left_coef$
$low_left_point = [0, y_size]$
$low_right_point = [x_size, y_size]$
up_left_point = [x_size * up_left_coef, y_size * v_coef]
up_right_point = [x_size * up_right_coef, y_size * v_coef]
2: end for

NZRSE 2020

Experimental Results- Experiment 2

Date	Time	LeftLane	RightLane
2019-10-15	14-44-00	1	0
2019-10-15	14-45-00	1	0
2019-10-15	14-46-00	0	4
2019-10-15	14-47-00	0	4
2019-10-15	14-48-00	0	4
2019-10-15	14-49-00	0	0
2019-10-15	14-50-00	0	0
2019-10-15	14-51-00	1	10
2019-10-15	14-52-00	1	10
2019-10-15	14-53-00	1	5

September 10, 2020 12/14

2

・ロト ・ 四ト ・ ヨト ・ ヨト

Conclusion

- We created a new, challenging data set by collecting CCTV images at each minute through the NZTA traffic cameras API, which includes a total of 24,085 images for the experiments discussed
- We evaluated the performance and accuracy of YOLOv3, faster R-CNN and mask R-CNN in detecting vehicles for the CCTV images
- We introduced a simple ROI algorithm to identify left-lane and right-lane in the CCTV images to identify the direction of vehicle movement. Then, we obtained the traffic flow counts for the selected road at Christchurch CBD

Project extension

Thank You!

R.Nilani@massey.ac.nz

NZRSE 2020

September 10, 2020 14/14

2

イロト イヨト イヨト イヨト