
Accelerating Log-Det 
calculations with GPUs

Damien Mather (1) and Chris Scott (2)

(1) Department of Marketing, University of Otago
(2) NeSI















Initial GPU implementation
● Starting with an MPI parallel version of the code
● Add in offloading to GPU
● Different options for running the code

○ MPI only
○ GPU only
○ MPI+GPU hybrid

● OpenACC for GPU offloading
○ Simple/not invasive - often just adding pragmas without other code changes
○ Support for Fortran and C/C++
○ Supported by PGI and Cray compilers (and others?)
○ Managed memory with PGI compilers - compilers handles data transfers between host and 

device (good starting point)



Algorithm
1. Distribute columns among MPI processes
2. Main loop over columns to compute determinant

a. One MPI process only finds pivot row - max value in column - and normalises column
b. Broadcast normalised column and pivot row index to other MPI processes
c. All MPI processes switch pivot row with last effective row
d. All MPI processes condensation calculation (nested loop over rows and columns)

● Most expensive operation - most of the time is spent here
● Compile with PGI and managed memory

○ mpipgf90 -ta=tesla:managed ...

● Add “kernels” block around these sections and enable managed memory
○ Couple of additional lines of code: code link

https://github.com/damienmather1/D/blob/cmake-single/LogDet.F90#L186-L195




OpenACC notes
● “kernels” region - compiler will try and figure out what can be parallelised

○ The compiler might not always be able to determine whether a loop is safe to parallelise

● Compile with “-ta=tesla:managed” - managed means compiler will figure out 
when to copy data

○ Might end up with more copies than necessary

● Alternatives
○ “loop” pragma - tell the compiler to parallelise a loop

■ Compiler assumes you know what you are doing
○ “copy”, “copyin”, “copyout”, “update”, etc. clauses to manually copy data

■ Compiler assumes you know what you are doing

● To use OpenACC with PGI compilers on NeSI
○ “module load PGI CUDA”
○ “module load impi/2019.6.166-PGI-19.10-GCC-9.2.0-2.32 CUDA” (if you need MPI too)



Initial GPU implementation - Mahuika timings

● 8000x8000 matrix
● 1 Tesla P100 GPU per MPI process
● 13x speedup by adding two lines of code

Num procs Time without GPUs (s) Time with GPUs (s) Speedup from GPUs

1 184.7 14.0 13.2

2 95.2 9.1 10.5

4 47.2 8.9 5.3



Initial GPU implementation - Mahuika

● Good scaling for larger array 
sizes - ~4x speedup with 4 
GPUs for 32,000 row matrix

● Speedup drops off at smaller 
sizes - not as much work



Optimised version - data locality
1. Distribute columns among MPI processes
2. Main loop over columns to compute determinant

a. One MPI process only finds pivot row - max value in column - and normalises column
b. Broadcast normalised column and pivot row index to other MPI processes
c. All MPI processes switch pivot row with last effective row
d. All MPI processes condensation calculation (nested loop over rows and columns)

● Currently the full data gets copied too and from the device every iteration
● Instead copy data onto device once at beginning of main loop and off once at 

the end
● Do all calculations on the GPU and just update host arrays as needed



Optimised version - data locality
● Requires more changes to source code

○ For example, instead of two lines to find location of maximum element in a column and its 
value, required ~30 lines and two loops (code)

● All operations are run on the GPU except the MPI broadcast, this requires 
some transfer between host and device

○ The process that is finding the pivot row updates its host column array before broadcasting to 
other processes, then all process update their device column array

https://github.com/damienmather1/D/blob/cmake-single/LogDetExplicit.F90#L170-L199




Optimised version - performance (Mahuika)

● 1.5x - 2x speedup for 8000 
row matrix

● 1.2-1.4x speedups for larger 
size matrices

● Probably a big enough boost 
to make adding the extra 
complexity to the code 
worthwhile



MPI-only vs MPI+OpenACC
● Maui Cray XC with 40 

cores per node
● Good scaling as 

increase number of 
nodes

● Mahuika better with 1 
GPU vs 1 node on Maui

● Scales up better on Maui











Summary
● OpenACC with PGI compilers and managed memory

○ Big speedup achieved with minimal code changes

● More speedup available at the cost of slightly more complex code
● NeSI Consultancy Service

○ https://www.nesi.org.nz/services/consultancy
○ Team of Research Software Engineers and Data Science Engineers
○ Contact us to find out more

https://www.nesi.org.nz/services/consultancy

