OpenACC pgfortran: substantial
speedups and beyond for the
O(3) Condensation algorithm for
determinants and estimation

By
Drs. Damien Mather and Chris Scott
University of Otago and NeSI
damien.mather@otago.ac.nz chris.scott@nesi.org.nz

background

* this process was the bottleneck to scaling a wider project to extract
D-efficient training, validation and test samples for big data predictive
analytics

* Example application areas include:
* Supermarket discount card member data

* Mobile app user data
* Web user data

* May also be useful in:
* Better insights from agricultural field trial design and analysis (welcome comments)

The problem with current split samples

* The predictors, or inputs, are often highly correlated

* This can be shown bias the effect estimates unless you use mixed
model estimators

* Current estimators can be very slow and/or unreliable when estimating large
(1000 vars) mixed models on large (50,000 obs) data samples

* Not all business (and other domain) problem models of interest benefit from
variable clustering

* Currently best practice for dealing with the curse of dimensionality
* E.g. cross-availability effects in logit supermarket category brand models

A solution: find D-efficient arrangements

* Uses design of experiments tool:
* Modified Federov designs found using OR techniques to maximise the D-
efficiency of a candidate design sample
* Good design samples can be found quickly from big data up to a bottleneck
limit of about 144 availability and cross-availability candidate effects

* Independent samples, for optimal model complexity pruning for
generalisation, can be found after filtering out all cases (customers) from the

training sample

The bottleneck

* The modified federov algorithm needs to evaluate the (log)
determinant of each candidate design.

* The log determinant function needed, being 0(3), quickly slows down

the sample generation beyond usefulness on current desktop
applications

* The big data will generate ill-conditioned candidate designs
* Often enough to fail the main algorithm

* Main research ‘pushed to stack’ whilst solutions investigated...

| found an algorithm for calculating determinants
that can be iImmunized against ill-conditioned data

Dodgson, C. L. (1866). Condensation of Determinants,
Being a New and Brief Method for Computing their
Arithmetical Values. Proceedings of the Royal Society of

London, 15, 150-155.

..by reordering each condensation argument to
preserve as much good condition as possible

Dong, X., Barnett, E. N., & Dhall, S. K. (2018). Parallel Matrix
Condensation for Calculating Log-Determinant of Large Matrix.

Initial GPU implementation

e Starting with an MPI parallel version of the code
e Add in offloading to GPU

e Different options for running the code
o MPIonly
o GPU only
o MPI+GPU hybrid

e OpenACC for GPU offloading

Simple/not invasive - often just adding pragmas without other code changes

Support for Fortran and C/C++

Supported by PGl and Cray compilers (and others?)

Managed memory with PGl compilers - compilers handles data transfers between host and
device (good starting point)

O O O O

Algorithm

1. Distribute columns among MPI processes

2. Main loop over columns to compute determinant

a. One MPI process only finds pivot row - max value in column - and normalises column
b. Broadcast normalised column and pivot row index to other MPI processes

c. Al MPI processes switch pivot row with last effective row

d. All MPI processes condensation calculation (nested loop over rows and columns)

e Most expensive operation - most of the time is spent here

e Compile with PGl and managed memory
o mpipgf90 -ta=tesla:managed ...

e Add “kernels” block around these sections and enable managed memory
o Couple of additional lines of code: code link

https://github.com/damienmather1/D/blob/cmake-single/LogDet.F90#L186-L195

! This part is matrix condensation calculation
pivot_row = INT(column_array(N_row))
N_row = N_row-1 ! Number of row will be one less

1$acc data

1$acc kernels

row_array(i+col_shift:N_col) = local A(pivot_row,i+col_shift:N_col) !Get the row_array
ISwitch last effective row and pivot row for local_A
local_A(pivot_row,i+col_shift:N_col) local A(N_row+1,i+col_shift:N_col)
do col = i+col_shift,N_col

do row = 1,N_row

local_A(row,col)= local_A(row,col) - column_array(row)xrow_array(col)

end do

end do

1$acc end kernels
I$acc end data

OpenACC notes

e ‘“kernels” region - compiler will try and figure out what can be parallelised
o The compiler might not always be able to determine whether a loop is safe to parallelise

e Compile with “-ta=tesla:managed” - managed means compiler will figure out

when to copy data
o Might end up with more copies than necessary

e Alternatives
o ‘“loop” pragma - tell the compiler to parallelise a loop
m Compiler assumes you know what you are doing
o ‘“copy’, “copyin”, “copyout”, “update”, etc. clauses to manually copy data
m Compiler assumes you know what you are doing

e To use OpenACC with PGl compilers on NeSl

o “module load PGl CUDA”
o “module load impi/2019.6.166-PGI-19.10-GCC-9.2.0-2.32 CUDA” (if you need MPI too)

Initial GPU implementation - Mahuika timings

Num procs | Time without GPUs (s) | Time with GPUs (s)

1 184.7 14.0
2 95.2 9.1
4 47.2 8.9

8000x8000 matrix
1 Tesla P100 GPU per MPI process
13x speedup by adding two lines of code

Speedup from GPUs
13.2

10.5

5.3

Initial GPU implementation - Mahuika

Speedup against number of GPUs for different array sizes

e (Good scaling for larger array Arraysize = 000

1.6

sizes - ~4x speedup with 4
GPUs for 32,000 row matrix

e Speedup drops off at smaller 1 E 2 : : = ;
sizes - not as much work praysize = 1600

ArraySize = 32000

1 15 2 25 3 35 4

Number of GPUs

Optimised version - data locality

1. Distribute columns among MPI processes

2. Main loop over columns to compute determinant

a. One MPI process only finds pivot row - max value in column - and normalises column
b. Broadcast normalised column and pivot row index to other MPI processes

c. All MPI processes switch pivot row with last effective row

d. All MPI processes condensation calculation (nested loop over rows and columns)

e Currently the full data gets copied too and from the device every iteration

e Instead copy data onto device once at beginning of main loop and off once at
the end

e Do all calculations on the GPU and just update host arrays as needed

Optimised version - data locality

e Requires more changes to source code
o For example, instead of two lines to find location of maximum element in a column and its
value, required ~30 lines and two loops (code)

e All operations are run on the GPU except the MPI broadcast, this requires

some transfer between host and device
o The process that is finding the pivot row updates its host column array before broadcasting to
other processes, then all process update their device column array

https://github.com/damienmather1/D/blob/cmake-single/LogDetExplicit.F90#L170-L199

0
19

pivot_row = maxloc(abs(local_A(1:N_row,1i)),DIM=1)

pivot_value = local_A(pivot_row,i)

! find pivot row and value (first pass to find pivot value)
pivot_value = 0.d0

'$acc parallel loop reduction(max:pivot_value) present(local_A)
do j=1,N_row

val = abs(local_A(j,1i))

if (val > pivot_value) pivot_value = val
enddo

!$acc end parallel loop

! find pivot row and value on device (second pass to find pivot row index)
matches = 0
1$acc parallel loop present(local_A) reduction(+:matches) copyout(pivot_row)
do j=1,N_row
val = abs(abs(local_A(j,i)) - pivot_value)
if (val .1t. tol) then
matches = matches + 1
!$acc atomic write
pivot_row = j
endif
enddo
I$acc end parallel loop
I$acc serial present(local_A) copyout(pivot_value)
pivot_value = local_A(pivot_row,i)
!$acc end serial

Optimised version - performance (Mahuika)

Speedups due to data locality optimisations

1.5x - 2x speedup for 8000 Araysize = 000

1.2-1.4x speedups for larger e 1 : :

size matrices
ArraySize = 16000

Probably a big enough boost

to make adding the extra - - -
complexity to the code : : : 4
worthwhile —

1
) - - -
0
1 2 4

Number of GPUs

Speedup

MPI-only vs MP1+OpenACC

e Maui Cray XC with 40
cores per node I

e (Good scaling as g i
increase number of
nodes

e Mahuika better with 1
GPU vs 1 node on Maui

e Scales up better on Maui

Comparing Maui nodes to Mahuika GPUs

Run time (s)

ArraySize = 16000

100

50\

1 1.5 2 25 3 35 4

Number of GPUs/Nodes

Checking for similar performance gains at
other end of the hardware spectrum

OpenACC accelerator = Nvidia GT 730
GDDR5

2 multiprocessors

128 double precision cores
warp size 32

unified addressing

managed memory

pgi pgfortran CE

openmpi 3.3

linux 18.04LTS intel Core 2 Quad
Q9750@3GHz

tot_time, 1thrudcpus

: i 2 4

“

»

-~

1
-

spdp lcpu-4cpu-lgpu_blkng_lnblkng

&

1

tot_time {s) blkng vs nbikng 3lg zpu
spdpx15S

2

Summary

e OpenACC with PGl compilers and managed memory
o Big speedup achieved with minimal code changes

e More speedup available at the cost of slightly more complex code

e NeSI Consultancy Service

o https://www.nesi.org.nz/services/consultancy
o Team of Research Software Engineers and Data Science Engineers
o Contact us to find out more

https://www.nesi.org.nz/services/consultancy

