
funcX: A Federated Function

Serving Fabric for Science
Ryan Chard, Yadu Babuji, Zhuozhao Li, Tyler Skluzacek, Anna Woodard,
Ben Blaiszik, Ben Galewsky, Daniel S. Katz, Ian Foster, Kyle Chard

2

The need for remote computing

• We have long strived to compute wherever
it makes the most sense:
• Resource availability, data location, analysis time,

wait time, software licenses, etc.

• Remote computing has been complex and
expensive; however we now have:
• High speed networks

• Universal trust fabrics

• Containers

3

Serverless computing

Provider runs infrastructure and manages
allocation of resources

Function as a Service (FaaS)

• Pick a runtime (Python/JS/R etc.)
• Write function code
• Run (and scale)

Low latency, on-demand, elastic scaling

Combine functions (e.g., workflows) to solve
complex problems

4

Adapting function as a service for science?

1. Support new workloads by decomposing
applications into functions

• Real-time, interactive, stream processing

• Simplify development, maintenance, testing

2. Facilitate use of diverse compute resources

• Abstract compute infrastructure

3. Enable fluid function execution across the
heterogeneous computing continuum

• Containers enable portability and sandboxing

➔ funcX: high performance and federated function as a service

5

FuncX: a federated function serving ecosystem for science

Functions:
– Register once, run anywhere, any time

Endpoints:
– Dynamically provision resources, deploy containers,

and execute functions

– Exploit local architecture/accelerators

funcX Service:
– Register and share endpoints

– Register, share, run functions

Turn any machine into a function serving
endpoint

Route functions to remote endpoints
– Closest, cheapest, fastest, accelerators …

6

Transform clouds, clusters, and supercomputers into

high-performance function serving systems

6

EP(x) EP(x) EP(x) EP(x)

EP(x) registry

7

Register functions for execution on any funcX endpoint

7

EP(x) EP(x) EP(x) EP(x)

EP(x) registry

Registration
f(x) + dependencies

8

Register functions for execution on any funcX endpoint

8

EP(x) EP(x) EP(x) EP(x)

EP(x) registry

repo2dockerRegister

f(x) g(x)

h(x) k(x)

Registration
f(x) + dependencies

9

Reliably and scalably execute registered functions on

any funcX endpoint

9

EP(x) EP(x) EP(x) EP(x)

Execution
f(x) [1,2,3, ..]

g(x) [‘a’, ‘b’, ‘c’, …]

f(x)

g(x)

g(x)

g(x)

10

Deploying a funcX endpoint

• Pip install funcX (e.g., using Conda)
in user space

• Authenticate and register with the
funcX service

• Configure the endpoint for the
local resources (using Parsl)

11

Demo

Setup an endpoint
$ pip install funcx

$ funcx-endpoint configure <ENDPOINT_NAME>

$ funcx-endpoint start <ENDPOINT_NAME>

Run a function

from funcx.sdk.client import FuncXClient

fxc = FuncXClient()

def funcx_sum(items):

return sum(items)

func_uuid = fxc.register_function(funcx_sum)

res = fxc.run(items, endpoint_id=<UUID>,
function_id=func_uuid)

fxc.get_result(res)

12

funcX scales to 100K+ workers

• funcX endpoints deployed on ALCF Theta and NERSC Cori

• Strong scaling (100K concurrent functions) shows good scaling up to 2K
containers even with short no-op/sleep tasks

• Weak scaling (10 tasks per container) shows scaling to 131K concurrent
containers (1.3M tasks)

•)

13

Elastic execution irrespective of underlying system

• funcX agent deployed on a
Kubernetes cluster

• Each function is registered in a
container and allowed to use 0-
10 pods (unit of execution)

• FuncX elastically scales active
pods (bottom) based on
workload (top)

14

funcX recovers from worker, manager, and endpoint
failures

15

MD

The Manufacturing and ML platform (MDML)

Example application: Manufacturing

Compute and storage continuum

Edge devices Laboratory machines HPC

1. Instrument sensors
stream data to the MDML

2. Use FaaS to analyze
data on-demand

3. FaaS tasks distributed
across the computing continuum

4. Results are used to
guide the experimentf(X)

funcX

Flame spray
pyrolysis, MERF

Grafana Real-Time Dashboards

16

Example application: Serial Crystallography

17

Example application: DLHub

18

funcX creates a federated FaaS ecosystem for science

funcX is a federated FaaS system
designed to meet the requirements of
scientific computing

Enables fluid execution by dispatching
functions to wherever makes the most
sense

Initial deployments scale to 130K+
concurrent workers and >1.2M
functions

http://github.com/funcx-faas

19

http://funcx.org

https://mybinder.org/v2/gh/funcx-faas/funcx/master

https://mybinder.org/v2/gh/funcx-faas/funcx/master

