
New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Git/GitHub Basics

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

- Deleted an important file?

- Needed to manage multiple versions of something?

- Needed to host your work somewhere easily accessible?

- Needed to collaborate with anyone on anything ever?

Why should researchers care about Git/Github?

Have you ever..

Bad version control

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Focus will be on the minimum knowledge necessary to use Git/GitHub effectively.

Basics of Git version control

- Making a Git repo.

- Staging files.

- Commiting files.

Simple Git branching

- Making branches

- Switching branches

We will cover...

Use of GitHub

- Making a GitHub repo.

- Adding a git remote.

- Pushing, Pulling.

Collaboration on GitHub

- Pull requests.

- Forking

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Focus will be on the minimum knowledge necessary to use Git/GitHub effectively.

Merge Strategies.

rebase, reset.

Tagging.

We will not be covering...

Cherry picking.

GUIs, tree visualisation.

Detached head.

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Version Control (Source Control)

A system for recording and managing changes to a file or set
of files.

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure 6

Git

- A version control system.
- Free, OpenSource.
- Distributed (as opposed to centralised).
- Originally created for the development of the

Linux kernel.

GitHub

- A website that hosts repositories.
- Free.
- Largest host of source code in the world.
- Provides many additional tools, Web hosting,

access control, documentation, task management,
etc.

Git is a tool, GitHub is a service.

You can use Git without GitHub, and vice versa. But it is most useful when used together.

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Where do I get Git?

Linux or MacOS

Should already be installed, check using git --version , otherwise install with
whatever package manager you use.

Windows

Google ‘download Git’.

Make sure you install Git Bash, as this is allows you to
use Git from command line.

Git Bash

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Git is primarily a command line tool, and this is all we will cover here.

However there are many different GUIs and programs with git integration.

It is worth checking if you are already using software with these features.

You may find it most useful to use a mix of command line, GUIs and integration.

New Zealand eScience Infrastructure 02/22/2014New Zealand eScience Infrastructure

git Basics

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Terminology
- Repo

What is a Repository? (Repo)

A history of file changes. (Lab Notebook).

In a directory.

Files in that directory are not automatically included in the repo. (
Not like gdrive / onedrive).

Stored in a hidden directory (.git) - Don’t touch!

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Terminology

Repository - record of changes

Directory - contains files
Untracked

(File in directory but not repo)

(File in repo but not directory)

States from repo can
be applied to files

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Managing
- init

git init

Will create an empty git repo in current directory.

Directory can already have files in it (They won’t be in the repo until added).

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure 13

Figure out what is going wrong, what is not working as it should
be. Isolate root cause.

● Gather information. Print statements, verbose
settings.

● Listen to end user. Get them to demonstrate problem
● Read error logs carefully, don’t make assumptions.

Don't delete your error logs!
● Recurrence, has this happened before?
● What changed? Should something have changed?

When did it last work?
● Separate root error from side effects.
● Stack trace.

What is your best guess as to the cause of the
problem?

● Question the obvious.
● Have other people had this problem? Google it.

Don’t get too swamped.

Confirm or reject your theory. Isolate and test
variables.

● Reproduce the problem in-controlled environment.
● Fix as many variables as possible, except the one

you are testing. What are other variables that
couldn't be fixed.

○ Environment, run locally, on VM,
Maui/Mahuika.

○ Resource configuration, nodes, CPUs,
hyperthreading, serial/oMP/MPI.

○ Input, one that has been validated.
○ Job stage. Eliminate unnecessary, step

though, run interactively .
● If using the queue --qos=debug.
● When to ask for help.

○ How to ask for help.

Plan and implement a solution to the problem.

● Recreate fix on component.
● Integrate fix into whole.

Try to reproduce the problem again, confirm it is fixed.

● Don't assume the problem is fixed because your
solution worked in a test environment!

● You may find new fun and exiting problems.

Write down the problem and the steps you took to solve it.

● Useful for future you.

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Managing
- add

Will add file <file> to your staging area. <file> isn’t in repo yet.

The staging area is meant for working changes.

Will show you...

- Branch name.
- Staged changes.
- Changes that haven’t been staged. (e.g. files you have edited but not added)
- Some other things.

git add <file>

git status

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

git rm <path>

git mv <path1> <path2>

Will rm <path> and stage <path> for removal.

Else <path> will return when you next pull.

Will mv <path1> <path2> and record change in repo.

Else <path2> will be treated as a new file, and <path1> will return when you pull.

Managing
- mv

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Managing
- gitignore

A ‘.gitignore’ file can be used to prevent files from being added

A text file named ‘.gitignore’ (it starts with a dot, so is hidden).

Applies to directory and all child directories.

Specifies (glob) patterns to be excluded from any future add commands.

Useful for …

Protecting incriminating information.

Avoid filling your repo with trash (temp files etc).

Exclude datasets, outputs or other non relevant files .

pycache/* # Everything in folder
*.swp # Any file ending in .swp
keys # Any file with the word ‘keys’ in name.
#*.pyc # This bit is commented out.

.gitignore

You probably do want to add your .gitignore to the repo.

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure 17

Figure out what is going wrong, what is not working as it should
be. Isolate root cause.

● Gather information. Print statements, verbose
settings.

● Listen to end user. Get them to demonstrate problem
● Read error logs carefully, don’t make assumptions.

Don't delete your error logs!
● Recurrence, has this happened before?
● What changed? Should something have changed?

When did it last work?
● Separate root error from side effects.
● Stack trace.

What is your best guess as to the cause of the
problem?

● Question the obvious.
● Have other people had this problem? Google it.

Don’t get too swamped.

Confirm or reject your theory. Isolate and test
variables.

● Reproduce the problem in-controlled environment.
● Fix as many variables as possible, except the one

you are testing. What are other variables that
couldn't be fixed.

○ Environment, run locally, on VM,
Maui/Mahuika.

○ Resource configuration, nodes, CPUs,
hyperthreading, serial/oMP/MPI.

○ Input, one that has been validated.
○ Job stage. Eliminate unnecessary, step

though, run interactively .
● If using the queue --qos=debug.
● When to ask for help.

○ How to ask for help.

Plan and implement a solution to the problem.

● Recreate fix on component.
● Integrate fix into whole.

Try to reproduce the problem again, confirm it is fixed.

● Don't assume the problem is fixed because your
solution worked in a test environment!

● You may find new fun and exiting problems.

Write down the problem and the steps you took to solve it.

● Useful for future you.

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

git commit

git commit -m <message>

git commit --amend

A commit takes all staged changes and records them in the repo.

Each commit should have a single purpose.

Will open your default text editor for a ‘commit message’.

Commit message should be a short summary of your changes.

Managing
- commit

For when you can’t spare the extra seconds to open a text editor.

Sneakily add your changes to your last commit.

Good for fixing mistakes and keeping your commit history uncluttered.

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure 19

Figure out what is going wrong, what is not working as it should
be. Isolate root cause.

● Gather information. Print statements, verbose
settings.

● Listen to end user. Get them to demonstrate problem
● Read error logs carefully, don’t make assumptions.

Don't delete your error logs!
● Recurrence, has this happened before?
● What changed? Should something have changed?

When did it last work?
● Separate root error from side effects.
● Stack trace.

What is your best guess as to the cause of the
problem?

● Question the obvious.
● Have other people had this problem? Google it.

Don’t get too swamped.

Confirm or reject your theory. Isolate and test
variables.

● Reproduce the problem in-controlled environment.
● Fix as many variables as possible, except the one

you are testing. What are other variables that
couldn't be fixed.

○ Environment, run locally, on VM,
Maui/Mahuika.

○ Resource configuration, nodes, CPUs,
hyperthreading, serial/oMP/MPI.

○ Input, one that has been validated.
○ Job stage. Eliminate unnecessary, step

though, run interactively .
● If using the queue --qos=debug.
● When to ask for help.

○ How to ask for help.

Plan and implement a solution to the problem.

● Recreate fix on component.
● Integrate fix into whole.

Try to reproduce the problem again, confirm it is fixed.

● Don't assume the problem is fixed because your
solution worked in a test environment!

● You may find new fun and exiting problems.

Write down the problem and the steps you took to solve it.

● Useful for future you.

New Zealand eScience Infrastructure 02/22/2014New Zealand eScience Infrastructure

Branches

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Branches
- Terminology

To branch a is to create a separately tracked copy of your files (within the same repo).

By convention the main/default branch is called master

master

new-branch

branch merge

To merge is to incorporate changes from one branch into another.

master

can delete now

It’s good practice to make potentially dangerous changes in a new branch.

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Creates a new branch called <branch-name> (try pick a descriptive name).

You are still working on the original until you git checkout <branch-name>

Changes files in your working directory to match <branch-name>

Makes <branch-name> the current branch future changes will be recorded here.

git branch <branch-name>

git checkout <branch-name>

Branches
- branching

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Branches
- checkout

When you checkout a branch, your working directory will change to match it.
Any changes commited will be to that branch.

master

new-branch

git branch new-branch

git checkout new-branch

working-branch

git checkout master

You cannot checkout while there are unrecorded changes.

First you must git commit or git stash changes.

working-branch

working-branch

New Zealand eScience Infrastructure 02/22/2014New Zealand eScience Infrastructure

GitHub

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

GitHub
- Remote

Local Repo...

Remote Repo...

Is the repository you are working on right now.

Where you are changing stuff.

Is a repository somewhere else.

Generally GitHub.

Generally upstream.

You pull from (get their changes)

You push to (impose your changes)

I always make sure to pull the latest version from my GitHub repo before making changes.

pu
sh

 t
o

 r
em

o
te

pu
ll to

 lo
cal

GitHub

Your Laptop

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

GitHub
- Upstream

Upstream / Downstream describes a relationship

A repo is upstream of you if ….

- You are ‘tracking’ it.
- More up to date.
- More official-er.
- Probably not going to adopt your

changes.

A repo is downstream of you if ….

- Less up to date.
- Less ‘official’.
- Probably going to adopt your

changes.

v2.3-domain_specific_package

v2.3-my_local_version

v2.4-stable_release_from_dev

Changes usually flow from upstream to downstream.

The developer has made some bugfixes upstream.

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

GitHub
- New

By default all GitHub Repos are public. (can be read and copied by anyone).

No limit to number of public repos.

Private repos have some restrictions (this is how GitHub is monetised).

Creating a new GitHub repository

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

git remote add <name> <url>

git push <remote> <branch>

git pull <remote> <branch>

Adds a remote called <name> at <url>. Conventionally this is named ‘origin’

Apply changes to remote.

You will need the right permissions on the remote.

Get changes from remote (and merge into your current branch).

GitHub
- pull/push

A cloned repo will already have a remote called origin.

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure 29

Figure out what is going wrong, what is not working as it should
be. Isolate root cause.

● Gather information. Print statements, verbose
settings.

● Listen to end user. Get them to demonstrate problem
● Read error logs carefully, don’t make assumptions.

Don't delete your error logs!
● Recurrence, has this happened before?
● What changed? Should something have changed?

When did it last work?
● Separate root error from side effects.
● Stack trace.

What is your best guess as to the cause of the
problem?

● Question the obvious.
● Have other people had this problem? Google it.

Don’t get too swamped.

Confirm or reject your theory. Isolate and test
variables.

● Reproduce the problem in-controlled environment.
● Fix as many variables as possible, except the one

you are testing. What are other variables that
couldn't be fixed.

○ Environment, run locally, on VM,
Maui/Mahuika.

○ Resource configuration, nodes, CPUs,
hyperthreading, serial/oMP/MPI.

○ Input, one that has been validated.
○ Job stage. Eliminate unnecessary, step

though, run interactively .
● If using the queue --qos=debug.
● When to ask for help.

○ How to ask for help.

Plan and implement a solution to the problem.

● Recreate fix on component.
● Integrate fix into whole.

Try to reproduce the problem again, confirm it is fixed.

● Don't assume the problem is fixed because your
solution worked in a test environment!

● You may find new fun and exiting problems.

Write down the problem and the steps you took to solve it.

● Useful for future you.

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

If you are working by yourself (or team non-concurrently), merge conflicts can be avoided.

git pull

git add

git commit

git push

GitHub
- Playing safe - Always start with the most current version from upstream.

- All changes you want to keep.

- When finished, with a useful message.

- To update your remote.

New Zealand eScience Infrastructure 02/22/2014New Zealand eScience Infrastructure

Collaborating

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Collaborating
- clone

git clone <remote>

Creates a new directory and copies the repo (and files) from <remote> into it.

When cloning from GitHub you can get the path here.

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Collaborating
- clone

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

It is bad practice to push changes straight to a (remote) master branch.

Extra important if collaborating.

- Keeps untested changes separate and easier to roll back.
- Clearly tracks added features.
- Reduces chances of a merge conflict.

Instead, from a your local push to a branch of the remote,

then go to GitHub and create a pull request.

Pull request is not the same as a push. You are asking the repo owner to pull from you.

Collaborating
- Push

git push <remote> <not-master>

Your push to master broke everything! Make a pull request next time please.

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Collaborating
- Fork If you don’t have permission to push straight to someone's GitHub repo, use fork.

 Forking a repo creates a new identical GitHub repo.

Clone: Git terminology for copying another Git repo.

Fork: GitHub terminology for making a copy of a GitHub repo (copy is owned by you)

Branch: Creates a new branch inside the same repo.

I took a fork of your project and fixed all your typos. You’re welcome.

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Collaborating
- Fork

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure 37

Figure out what is going wrong, what is not working as it should
be. Isolate root cause.

● Gather information. Print statements, verbose
settings.

● Listen to end user. Get them to demonstrate problem
● Read error logs carefully, don’t make assumptions.

Don't delete your error logs!
● Recurrence, has this happened before?
● What changed? Should something have changed?

When did it last work?
● Separate root error from side effects.
● Stack trace.

What is your best guess as to the cause of the
problem?

● Question the obvious.
● Have other people had this problem? Google it.

Don’t get too swamped.

Confirm or reject your theory. Isolate and test
variables.

● Reproduce the problem in-controlled environment.
● Fix as many variables as possible, except the one

you are testing. What are other variables that
couldn't be fixed.

○ Environment, run locally, on VM,
Maui/Mahuika.

○ Resource configuration, nodes, CPUs,
hyperthreading, serial/oMP/MPI.

○ Input, one that has been validated.
○ Job stage. Eliminate unnecessary, step

though, run interactively .
● If using the queue --qos=debug.
● When to ask for help.

○ How to ask for help.

Plan and implement a solution to the problem.

● Recreate fix on component.
● Integrate fix into whole.

Try to reproduce the problem again, confirm it is fixed.

● Don't assume the problem is fixed because your
solution worked in a test environment!

● You may find new fun and exiting problems.

Write down the problem and the steps you took to solve it.

● Useful for future you.

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Insert shill for CST

The first step of any NeSI consultancy is to set up a collaborative workflow.

Hey! You know how to do that now. You should sign up or whatever.

www.nesi.org.nz/services/consultancy

New Zealand eScience Infrastructure 02/22/2014New Zealand eScience Infrastructure

Fin

