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Experiment 313: Estimation of the Gravitational Constant

Aims

The main aim of the experiment is to estimate the gravitational constant G. Secondary aims are to study
torques, torsion balances, and damped harmonic oscillations. The experiment also provides an exercise and
discussion on nonlinear curve-fitting, and error analysis.

Warning: Do not disturb the setup until you have read this handout. Mishandling of the apparatus can
set it in motion, and if this happens you will need to wait hours for the motion to damp out.
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Introduction

Of the fundamental forces, the one of which we are most-directly aware is that of gravity. The force between
two spherical masses m and M whose centre-to-centre separation is r is given by Newton’s law of Universal
Gravitation:

F = −GmM r̂

r2
, (1)

where G is the “gravitational constant,” and the direction of r̂ is defined in Figure 1. Because gravity is by
far the weakest of the fundamental forces, our estimate of G is one of the universal constants with the lowest
precision.

r

M m
r̂

Figure 1: Two masses, separated by a distance r, and the direction of the unit vector r̂.

Following in the footprints of Henry Cavendish, we are going to estimate this constant G. The experiment
you are about to perform is not very different from the way Cavendish did his in 1798.1 Interestingly, our
current “best” estimates of G are not that different from the Cavendish’ result, either!

1Cavendish estimated the density of the Earth; his measurements included all the ingredients to estimate G, but he never
did. Poynting did so, almost 100 years later, in 1894.

http://en.wikipedia.org/wiki/Henry_Cavendish
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Figure 2: Left: Torsion balance with masses m, and torque constant κ, under the influence of two masses
M . Right: Top view of the balance.

We will use a torsion balance, that is the modern-day equivalent of Cavendish’ balance in 1798. It consists
of a bar suspended by a very thin wire and carrying a small lead sphere of mass m at each end (Figure 2).
To twist the balance an angle θ from its position at rest, requires a torque

τ = κθ,

where κ is the torque constant, defined by the rigidity and dimensions of the wire.

Torque on the balance with M in Position A

The presence of a lead sphere of mass M , as shown in Figure 2, exerts a force F on m as defined by equation 1.
With m rotating around an axis with a radius d, the force F results in a torque

τ = d× F, (2)

where × denoted the cross product, so that the direction of the vector τ is according to the right-hand rule.

1. Use the right panel of Figure 2, to show that the torque on the torsion balance due to one mass M is(
GmM
b20

cos θ0

)
d.

With the balance at rest in position A at an angle θ0 from the reference position, the gravitational attraction
between the large and small spheres provides a torque that is exactly balanced by the restoring torque from
the suspension wire:

2

(
GmM

b20
cos θ0

)
d− κθ0 = 0, (3)

where b0 is the distance between the spheres of mass m and M at rest.

2. Show that for small angles θ0, cos θ0 ≈ 1, and that

G =
θ0b

2
0

2mMd
κ. (4)
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If we know the torque constant κ, G is expressed in known or measured terms, only. The way to get κ
experimentally is to oscillate the system, as in the next section.

Exciting damped harmonic oscillations: moving M to Position B

When the large spheres are rotated to position B, the suspended system will be deflected from its initial
angular position θ = θ0 and eventually reach a new rest position at the same angle on the opposite side
of the reference position. However, the torsion balance will oscillate before equilibrium is restored. How
many oscillations and their amplitude depend on the torque constant and friction in the wire and drag of
the balance in the air, captured jointly in friction constant β.

The differential equation governing the oscillatory motion of the suspended system can be derived by applying
Newton’s second law of motion for a rotational system. The torque provided by the masses M is balanced
by the rotational acceleration, a rotation velocity (with friction β) and the torque provided by the wire with
constant κ:

I
d2θ

dt2
+ β

dθ

dt
+ κθ = 2

GmM

b2
d, (5)

where the moment of inertia I [Chapter 18 in 1]. For the two discrete masses m, this is

I =
∑
i

mid
2
i = 2md2. (6)

For a bar of length 2d and ρ as its mass per unit length, the moment of inertia is:

I =

∫ d

−d
ρx2dx. (7)

3. Show that the total moment of inertia of rod and masses m is

I = 2md2 +
1

12
mbarl

2
bar = 2md2 +

1

12
mbar (2d)

2
= 2md2

(
1 +

1

6

mbar

m

)
. (8)

The time-dependent forcing term

Now we are almost ready to solve the inhomogeneous differential equation of second order, as presented by
Equation 5. The left-hand side is uniformly expressed in terms of θ(t), but the forcing term on the right-hand
side is a function of mass separation b, and this separation is a function of time, as well.

4. Use Figure 2 to show that b(t) can be expressed as

a− b(t) = d sin(θ(t)).

5. And use the small-angle approximation and a first order Taylor series approximation [e.g., Section 3.1
in 5] to show that

1

b(t)2
≈ 1

a2

(
1 +

2d

a
θ(t)

)
. (9)

Equation (5) then becomes:

I
d2θ

dt2
+ β

dθ

dt
+Kθ = 2

GmMd

a2
, (10)

where

K = κ− 4GmMd2

a3
=

2GmMd

b20θ0
− 4GmMd2

a3
. (11)
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Figure 3: Left: Positions (±s0) of the light beam at a distance L from the torsion balance. The light source
is reflected from the mirror on the torsion balance under influence of the large masses M in Positions A and
B. Right: Oscillations induced by moving the large masses M from Position A to Position B.

6. Rearrange equation (11), so that

G =
b20θ0

2mMd

(
a3

a3 − 2b20dθ0

)
K. (12)

All terms except K on the right-hand side are constants that we can measure in the lab, and K can be
estimated indirectly by experiment as equation (10) is a standard second order differential equation which
has a solution of the form:

θ = A exp

(
−βt

2I

)
cos (ωt+ φ) +

2GMmd

Ka2
. (13)

7. Show that expression 13 is a solution to the differential equation 10, where A and φ are constants and
the angular frequency is

ω =

√
K

I
− β2

4I2
, (14)

Rearranging, we get

K = I

(
ω2 +

β2

4I2

)
. (15)

The exponential decay of the oscillations

The oscillatory motion of the suspended system is studied by observing the source light reflected by the
torsion balance onto the scale at distance L from the balance. The light spot moves from s = −s0 and
oscillates about s = +s0 (Left panel of Figure 3). If L is large in the laboratory set-up), s may be treated as
the arc subtended by the angle of deflection of the light beam which is twice the deflection of the suspended
system (i.e. 2θ):

8. Use Figure 3 to write:

θ0 =
2s0
4L

=
s0
2L
, (16)

so that

G =
b20s0

4mMdL

(
a3

a3 − b20ds0/L

)(
ω2 +

β2

4I2

)
I. (17)
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Figure 4: Forces F and F ′ on mass m due to both large spheres.

Thus s is proportional to θ and a plot of s against t (see the right panel of Figure 3), may be used to measure
the quantities necessary for the determination of the gravitational constant G. From the plot of s against t,
we can determine θ0 and β/I, the former by measuring the initial and final position of the light spot (−s0
and s0), the latter by fitting the period and decay of the oscillations.

9. Insert equation (8), to get the following equation for the gravitational constant expressed in terms of
measurable quantities:

G =
ω2b20ds0

2ML

[
a3

a3 − b20ds0/L

] [
1 + (α/ω)

2
] [

1 +
1

6

mbar

m

]
, (18)

where the damping parameter α = β/(2I).

Equation (18) has also been arranged so that the principal and secondary effects of the oscillatory motion
of the suspended system are clear. All the factors in the square brackets represent secondary effects and
contribute less than 10% to the value of G. From left to right, they account for (a) the varying gravitational
torque, (b) effects of damping, and (c) consideration of the bar in the moment of inertia of the suspended
system. However, the first term is not of the same form as the others, yet:

10. Use a first-order Taylor expansion [e.g., Section 3.1 in 5] to show that
[

a3

a3−b20ds0/L

]
≈ [1+b20ds0/(a

3L)],

so that

G =
ω2b20ds0

2ML

[
1 +

b20ds0
a3L

] [
1 + (α/ω)

2
] [

1 +
1

6

mbar

m

]
. (19)

Correction for the effect of the “distant” sphere

In the theory given above, the gravitational force exerted by the more distant of the two large spheres has
not been taken into account. This additional force F ′ has a component f exactly opposite to the force F
due to the closer sphere (Figure 4). Based on the geometry of Figure 4, we can express f in terms of F as
follows:

f = F ′ cosψ =
GmM

c2

(
b0 + 2d sin θ0

c

)
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11. Show that f = γF , with F = GmM/b20 and

γ ≈ b30 + 2b20dθ0

(b20 + 4d2 + 4b0dθ0)
3/2

=
b30 + b20ds0/L

(b20 + 4d2 + 2b0ds0/L)
3/2

. (20)

To take into account the force f , we should multiply equation (4) by [1 − γ]. As a result, equation (18) for
the gravitational constant should be divided by [1 − γ].

12. Use a first-order Taylor expansion to show that
[

1
1−γ

]
≈ [1 + γ], and that our estimate of the gravita-

tional constant is now

G =
ω2b20ds0

2ML

[
1 +

b20ds0
a3L

] [
1 + (α/ω)

2
] [

1 +
1

6

mbar

m

]
[1 + γ]. (21)

Correcting this systematic error, should improve your estimate of G, but even recent estimates of G must
still suffer from systematic errors, as their quoted estimates plus uncertainties do not overlap [2, 3, 4].

Experiment

After you have answered all the previous questions:

13. Measure L, the distance from the mirror to the screen. From the measurements given below for the
apparatus, determine a and b:

Data for the apparatus
Distance from the centre of the large mass M against the glass to the reference line (a) 4.22 ± 0.05 cm
Mass of large spheres (M) 1.500 ± 0.005 kg
Centre-to-centre distance between small spheres (2d) 10.00 ± 0.05 cm
Ratio of mass of bar to mass of small sphere (mbar/m) 0.06 ± 0.01

Note that a = 4.65 ± 0.05 cm for the PASCO unit.

14. Turn on the light source for the experiment to reflect on the scale

15. Measure the distance from wall to scale L

16. Set up the tablet with the tripod so that the light on the scale is in one end of the frame, and you have
20 cm to the other side.

17. On the tablet, select the lablet application, then camera, video, and set frame rate to 0.1 fps

18. Adjust light settings in the room so you can see the total scale bar (57 cm from end to end) in the
video, and a clear light dot.

19. Start recording

20. After 5 minutes, flip the masses and record for two hours.

21. Stop recording (square button), select ”done”, and ”save.” This will result in a filename for your movie
with the date in it.

22. Set the x/y coordinate system, set the scale bar, and calibrate knowing the frame is 57cm

23. Use the autopicking function on the lablet to track the light dot. Output goes to CSV file.

24. Connect tablet to a PC with USB, navigate to your folder, select the CSV file in your folder with the
recording, and save this to the desktop PC
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25. Just by reading from a plot of your data, you can estimate (by hand/eye), all the values that go in
base value for G. If

G ≈ ω2b20ds0
2ML

should get you the within an order of magnitude of G. If not, please check all your constants, units,
etc.

26. Fitting the data to equation (13), estimate the initial and final steady-state levels of s: ±s0, the
angular frequency ω, and the damping parameter α = β/(2I).

27. Estimate G from equation (19).

28. Estimate G from equation (21), which corrects for the attraction between m and the distant M .

29. Carry out an error analysis, including consideration of the approximations made in the formulae for
determining the gravitational constant G.

List of Equipment

1. Gravitation torsion balance Leybold Model 332 10, or PASCO unit

2. Light source Leybold Model 450 60, or CW laser spot

3. A samsung tablet, with pin 6354(?)
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Kasper van Wijk


