
New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Making best use of your NeSI

HPC allocation

Tips for optimising job configuration and

reducing your queue time

New Zealand eScience Infrastructure

In this talk you should learn the basics of:

- Which Slurm commands can help you view how efficiently your
code ran

- What does an efficient job look like, and
- How to improve your jobs efficiency

Overview

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

What do I mean by Job
Efficiency and why Does it
Matter?

New Zealand eScience Infrastructure

- Should utilise all resources available to it.
- If a job has 10 CPUs for an hour but only utilises one hour of CPU time it is

not efficient
- Should efficiently use the resources allocated to it.

- A job could appear to be efficiently utilising CPUs and memory, but if the
code is not well written it could still be inefficient

- Code using a less efficient method to calculate something might still
effectively utilise resources but take longer or use more than if it used a
more efficient method

- We will mostly look at avoiding the first type of inefficiency

An Efficient Job

New Zealand eScience Infrastructure

- The larger a job is in any dimension the longer it can expect to wait.
- We are less inclined to provide allocation increases to projects with

inefficient jobs.
- Inefficient work means your Fair Share score drops faster, which

decreases your job priority
- It can affect the queue time of others on the platforms.

It is therefore necessary to accurately estimate your job’s resource
requirements or you risk wasting both time and resources.

But to do this you need to know if your jobs are inefficient in the first place.

The HPCs are a Shared Resource:

New Zealand eScience Infrastructure

That’s where sacct comes in:

By default show you all jobs queuing, running, or has run since midnight. The most important
default sacct columns are “Elapsed” (how long the job ran for), “Alloc” (the amount of allocated,
logical CPUs), “MaxRSS” (the maximum amount of memory detected for that job step) and
“TotalCPU” (the total non-idle CPU time).

- To look at a specific job use the -j flag
- To look at a jobs from an earlier time use the -S flag, followed by the earlier date in the

YYYY-MM-DD format

Sacct

sacct
 JobID JobName Elapsed TotalCPU Alloc MaxRSS State
--------------------- ---------------------- -------------------- ---------------- ------- ---------------- -------------------
12345678 Job 2-22:01:02 9-00:50:25 32 COMPLETED
12345678.batch batch 2-22:01:02 9-00:50:25 32 1956756K COMPLETED
12345678.exte+ extern 2-22:01:02 00:00:00 32 0 COMPLETED

New Zealand eScience Infrastructure

- A perfectly CPU efficient job will have TotalCPU equal to Elapsed multiplied by Alloc (we do
not expect your jobs to be perfectly efficient)

- 2-22:01:02 multiplied by 32 is about 93 days.
- This jobs TotalCPU is 9 days, so it is only 10% efficient
- This indicates it might be reasonable to ask for fewer CPUs
- There is no set rule for what is CPU efficient enough, do your best to make them as efficient as

possible.

How CPU Efficient is my Job?

sacct
 JobID JobName Elapsed TotalCPU Alloc MaxRSS State
--------------------- ---------------------- -------------------- ---------------- ------- ---------------- -------------------
12345678 Job 2-22:01:02 9-00:50:25 32 COMPLETED
12345678.batch batch 2-22:01:02 9-00:50:25 32 1956756K COMPLETED
12345678.exte+ extern 2-22:01:02 00:00:00 32 0 COMPLETED

New Zealand eScience Infrastructure

- The job could be serial, or hard coded to utilise fewer cores than
requested

- The job could have parallel and serial parts
- The jobs CPUs could site idle waiting on I/O
- CPUs could be sitting idle waiting on other CPUs to complete

tasks (load imbalance)

What is causing the Inefficiency?

New Zealand eScience Infrastructure

- Hyperthreading is enabled on the NeSI machines, so for each physical CPU core,
there are two logical CPUs.

- Hyperthreading can be turned off with #SBATCH --hint=nomultithread,
but doing so will make your jobs appear half as CPU efficient.

- So a non-hyperthreaded job with 50% CPU efficiency is as efficient as a
hyperthreaded job with 100% CPU efficiency.

- You should test your job both with and without hyperthreading, as some jobs
perform better with it disabled.

- Learn more about hyperthreading on the NeSI platforms here:
https://support.nesi.org.nz/hc/en-gb/articles/360000568236

Be aware of Hyperthreading

New Zealand eScience Infrastructure

- A job is generally considered memory efficient if at any time one of its job steps comes close
to the requested memory, in this case 250 MB per CPU.

- Given there are 32 CPUs, and this is a shared memory job it is requesting 8,000 MB of
memory.

- The maximum detected memory usage is ~1910 MB, about ~25% efficient
- A good rule of thumb is to ask for ~20% more memory than you think you need, so this job

should be asking for ~2.3 GB, or 72 MB per CPU.
- Note: sacct is not infallible, memory is only detected every 30 seconds.

How Memory Efficient is this Job?

sacct
 JobID JobName Elapsed TotalCPU Alloc MaxRSS State
--------------------- ---------------------- -------------------- ---------------- ------- ---------------- -------------------
12345678 Job 2-22:01:02 9-00:50:25 32 COMPLETED
12345678.batch batch 2-22:01:02 9-00:50:25 32 1956756K COMPLETED
12345678.exte+ extern 2-22:01:02 00:00:00 32 0 COMPLETED

New Zealand eScience Infrastructure

- A job is generally considered time efficient if its elapsed time is close to its
requested walltime, 3 days in this example.

- Like memory requests it is a good idea to ask for ~20% more wall time than
you expect to use.

How Time Efficient is this Job?

sacct
 JobID JobName Elapsed TotalCPU Alloc MaxRSS State
--------------------- ---------------------- -------------------- ---------------- ------- ---------------- -------------------
12345678 Job 2-22:01:02 9-00:50:25 32 COMPLETED
12345678.batch batch 2-22:01:02 9-00:50:25 32 1956756K COMPLETED
12345678.exte+ extern 2-22:01:02 00:00:00 32 0 COMPLETED

New Zealand eScience Infrastructure

- Default sacct assumes pre-existing knowledge of jobs
- This is usually fine, but it can be helpful to have all relevant

information in sacct output.
- So why not format your own sacct command?
- You can find additional sacct options than those we show by

using the “man sacct” command.

Custom Formatted Sacct Commands

New Zealand eScience Infrastructure

sacct --format=JobID,JobName,Timelimit,Elapsed,Alloc,TotalCPU,ReqMem,MaxRSS,nTasks,State,account,partition

 JobID JobName Timelimit Elapsed AllocCPUS TotalCPU ReqMem MaxRSS NTasks State Account Partition

------------------- ---------------- ----------------- ------------------- -------------- -------------------- ----------------- --------------- ----------- ----------------- --------------- ------------------

12345678 Job 3-00:00:00 2-22:01:02 32 9-00:50:25 250Mc COMPLETED nesi99999 large

12345678.ba+ batch 2-22:01:02 32 9-00:50:25 250Mc 1956756K 1 COMPLETED nesi99999

12345678.ex+ extern 2-22:01:02 32 00:00:00 250Mc 0 1 COMPLETED nesi99999

Custom Formatted Sacct Commands

You can set a custom formatted sacct command as your default by exporting it in your home directories .bashrc
- nano /home/user001/.bashrc
- Paste and save:

export SACCT_FORMAT=JobID,JobName,Timelimit,Elapsed,Alloc,TotalCPU,ReqMem,MaxRSS,nTasks,State,account,partition

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Job Profiling

New Zealand eScience Infrastructure

Profiling can detect things that sacct can’t:

- sacct only gives the maximum detected memory and average CPU usage,
profiling breaks it down over time.

- Breakdown of CPU and memory usage can be used to find job break points to
make more efficient jobs.

- Profiling also gives read/write information.
- All this makes in depth assessment of your code efficiency easier.
- Additionally, software specific profilers like a MAP for C/C++, Fortran and

Python code can even pinpoint which lines of code are inefficient or
computationally intensive.

Profiling

New Zealand eScience Infrastructure

1. Add the line #SBATCH --profile task to your Slurm
script

2. After your job completes you will need to collate the profile
data into a HDF5 file using the command sh5util -j
<jobid>

3. Use the Python or MATLAB script found on our support page to
plot your results:
https://support.nesi.org.nz/hc/en-gb/articles/360000810616

Note: the Slurm profiler is not enabled on Maui

How to use the Slurm Profiler

https://support.nesi.org.nz/hc/en-gb/articles/360000810616

New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

- Investigate other profilers on NeSI:

https://support.nesi.org.nz/hc/en-gb/articles/360000930396
https://www.youtube.com/watch?v=b1cpCeksWXw

- Now that you know how to determine if a job you’ve already
run is inefficient, learn how to predict jobs resource
requirements before you run them:

https://support.nesi.org.nz/hc/en-gb/articles/360000728016

https://www.youtube.com/watch?v=CqATGcNbipo&feature=yo
utu.be

What do you do now?

https://support.nesi.org.nz/hc/en-gb/articles/360000930396
https://www.youtube.com/watch?v=b1cpCeksWXw
https://support.nesi.org.nz/hc/en-gb/articles/360000728016
https://www.youtube.com/watch?v=CqATGcNbipo&feature=youtu.be
https://www.youtube.com/watch?v=CqATGcNbipo&feature=youtu.be

New Zealand eScience InfrastructureNew Zealand eScience Infrastructure

Questions

