NLIMED: Natural Language Interface for Model Entity Discovery

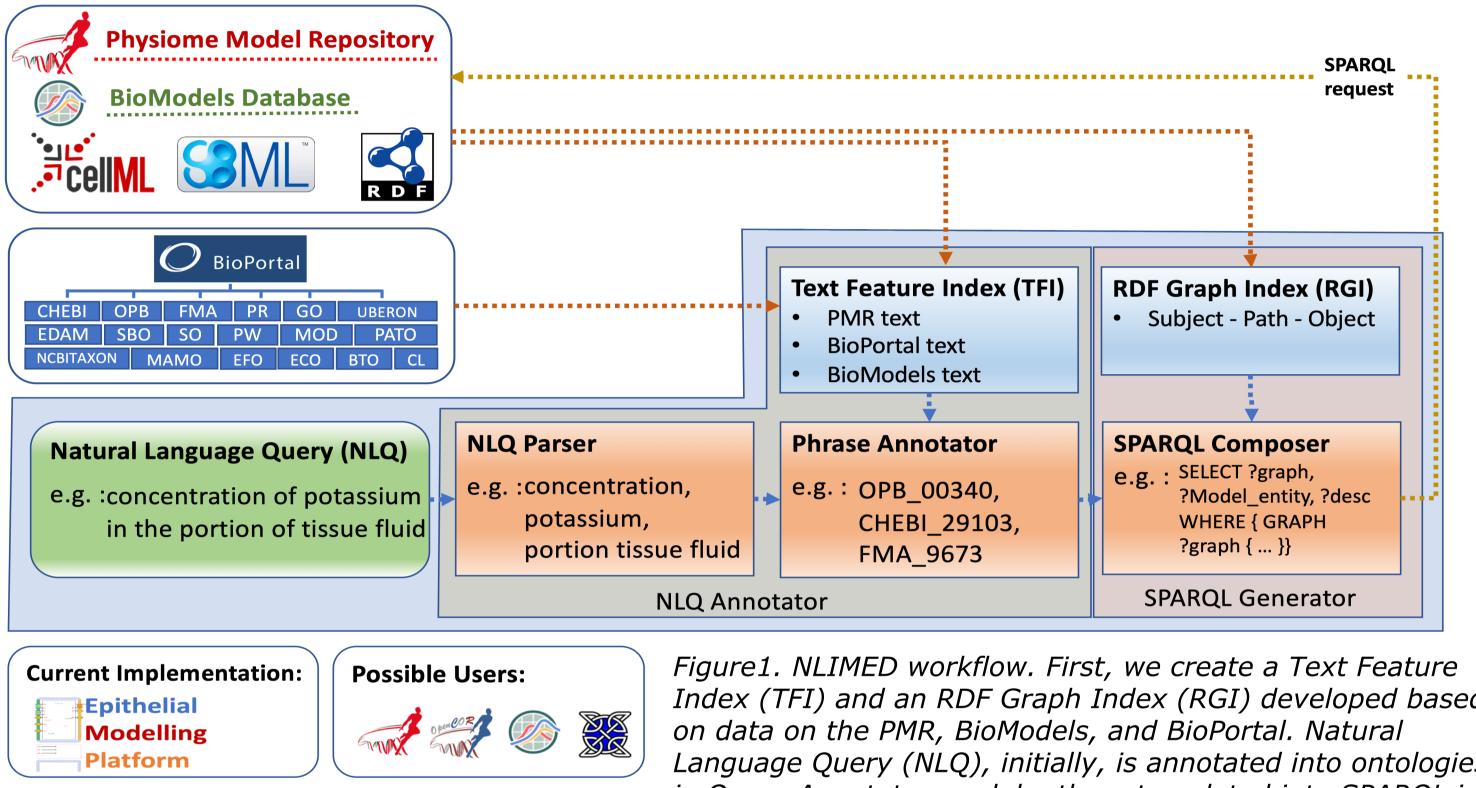
Yuda Munarko, Dewan M. Sarwar, Anand Rampadarath, Koray Atalag, David Nickerson, The University of Auckland, New Zealand

Motivation

- Semantic annotation is used to ensure FAIR biosimulation models in biology and physiology.
- The COmputational Modeling in **BIology Network (COMBINE)** community recommends the use of the Resource Description Framework (RDF).
- The RDF provides the flexibility of model entity searching (e.g. flux of sodium across apical plasma membrane) by utilising SPARQL.
- Creating SPARQL is **not easy**.
- The availability of an interface to convert a natural language query to SPARQL is beneficial.

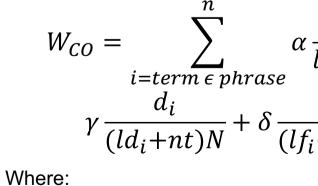
Results

- NLIMED, a natural language query to SPARQL interface to retrieve model entities from biosimulation models.
- The interface works for the PMR and BioModels.
- The interface has been implemented on the Epithelial Modeling Platform and Model Annotation and Discovery with the PMR.


Availability

- https://github.com/napakalas/NLIMED
- <u>https://doi.org/10.1101/756304</u>
- https://doi.org/10.17608/k6.auckland.11 728977

Method



NLQ Parser

- Utilising NLTK or Stanford parsers

Phrase Annotator

- Calculating the weight of candidate
- Select the highest weight
- Avoid overlapping

-	p_i , s_i , d_i	= (1 or 0) pre
-	lp_i , ls_i , ld_i , lf_i	= the length of
		ontology a
-	f _i , nt	= the number
-	Ν	= the number
-	$ln \frac{S}{S-ts_i}$	= inverse doo
-	α, β, γ, δ	= multiple we

Index (TFI) and an RDF Graph Index (RGI) developed based Language Query (NLQ), initially, is annotated into ontologies in Query Annotator module, then, translated into SPARQL in SPARQL Generator module.

- Convert a query to candidate phrases

phrases to candidate ontologies W_{CO}

$$\frac{p_i}{lp_i + nt} + \beta \frac{s_i}{ls_i + nt} + \frac{f_i}{f_i + nt} N \log \frac{S}{S - ts_i}$$

effLabel, synonym, definition of preffLabel, synonym, definition in class and description in cellml or rdf.

- er of term in description, phrase er of class ontologies having the term
- ocument frequency,
- multiple weighting scenario

RDF Graph Index

- Managing RDF in tree structures
- An index of Subject Path Object
- Path is a set of predicates

Text Feature Index

- Extracting features from repositories and BioPortal (preferred label, definition, synonym, description)
- Implement inverted index for fast retrieval

SPARQL Composer

- Constructing SPARQL based on Text Feature Index and Phrase Annotator results.

AUCKLAND BIOENGINEERING INSTITUTE

Summary

NLQ Annotator can identify class ontologies in NLQ

Method	Precision	Recall	F-measure	Query accuracy	Exec time
NLQ Annotator + Stanford parser NLQ Annotator +	0.744	0.768	0.756	0.549	0.532
NLTK parser NCBO Annotator	0.591 0.402	0.728 0.376	0.652 0.388	0.333 0.196	0.101 36.697

NLIMED can handle a wide range of NLQ types containing one or many terms with one or many phrases.

SPARQL Generator storing RDF graph as indexes can generate all possible SPARQL based on provided ontologies.

Future Works

Implement NLIMED on:

- The Physiome Model Repository (PMR) aggregated search feature
- A generic biosimulation model search engine accommodating PMR and BioModels

Further, we are interested to explore lexical semantics inside NLQ and semantic concepts inside model entities to increase NLIMED performance and its use as a question and answer system.

References

Neal, M.L., König, M., Nickerson, D., Mısırlı, G., Kalbasi, R., Dräger, A., Atalag, K., Chelliah, V., Cooling, M.T., Cook, D.L. and Crook, S., 2019. Harmonizing semantic annotations for computational models in biology. *Briefings in bioinformatics*, 20(2), pp.540-550.