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Abstract

This paper outlines a new spatial-temporal programming model. The model builds on key-value
programming models such as MapReduce by enabling bounded space and time to be keys and a
collection of spatial-temporal data to be values. This reconceptualization of key-value program-
ming exploits spatial-temporal characteristics in data to facilitate the parallelization of spatial
methods and models. This paper outlines the new space-time key-collection programming model
and a proof-of-concept implementation For Expressing Spatial-Temporal computation in parallel,
called ForEST. Three use cases for the programming model and ForEST language are outlined.
First, as a platform to advance research in geospatial computing and algorithm development
for spatial problems. Second, as a teaching tool to help learners understand the complexities
around handling data, expressing computation, and executing code in spatial-temporal applica-
tions. Third, as a language to help process, mine, and analyze spatial-temporal data in a number
of fields including GeoComputation, Geographic Information Science, and Spatial Data Science.

Keywords: geospatial computing, domain-specific programming language, big data.

1 Introduction

MapReduce revolutionized distributed computing by building on two classic primitives from func-
tional programming, namely Map and Reduce (Dean and Ghemawat, 2008). Traditionally, map
applies a function to each element in a list producing a new list, and reduce applies a reducer
function such as sum to each element in a list and produces a scalar value. MapReduce is a generic
programming model that is applicable to a broad set of problems, hides the complexity of paral-
lelism from the application developer, and enables automatic parallelism the so-called “holy grail” of
parallel computing. The novelty of MapReduce was not in the methods—Map and Reduce—which
were around for decades, but rather how they were elegantly linked together using key-value pairs.
MapReduce achieved automatic parallelism by separating the data model (key-value pairs), expres-
sion of the computation (mappers and reducers), and execution of the code (MapReduce system).
This separation both hid parallelization complexities from users while also enabling optimizations
and tuning at a system level. MapReduce also made it clear that many, often simple map and reduce
tasks can be combined to create complex workflows and still achieve remarkable performance. This
model served as a basis for a wide range of follow-on implementations that have driven big data
processing in industry and academia. However, the key-value programming model can be difficult
to apply to spatial problems.
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This paper reenvisions the generic key-value programming model to use space-time as the key and
a collection of spatial-temporal data as the value. This paper’s key contributions include: (1)
a space-time key-collection programming model, and (2) a proof-of-concept implementation of the
model called ForEST (For Expressing Spatial-Temporal computing). The programming model and
associated implementation are capable of expressing myriad methods and models in geocomputation,
geographic information science, spatial analysis, spatial data mining, and spatial data science.

The rest of this article is organized as follows. Section 2 reviews MapReduce and related work.
Section 3 describes the space-time key-collection programming model. Section 4 describes a proof-
of-concept implementation. Section 5 draws conclusions and discusses future applications.

2 MapReduce

MapReduce and MapReduce-like variants including Map-Reduce-Merge (Yang et al., 2007) have
both advantages and disadvantages. They can effectively leverage massive amounts of cheap com-
modity hardware for high-throughput computing, are fault-tolerant through data replication, and
support automatic parallelization through a simple model based on functional programming prim-
itives (Map and Reduce) (White, 2012; Dean and Ghemawat, 2008; Yang et al., 2007). However,
MapReduce has several key drawbacks that limit its application to spatial problems.

1. MapReduce tends to work best on homogeneous data (e.g., webpage text, log files, etc). An
extension called Map-Reduce-Merge partially resolves this limitation by introducing a Merge
task that follows a Reduce task and “merges” data from separate sources.

2. Partitioning (spatial) data occurs outside of the MapReduce model. This simplifies execution,
because all data partitioning is handled “outside of the execution model” in theory. However,
in practice users are still required to split their data. Usually this occurs when data is stored
in a distributed file system (e.g., Google File System, Hadoop Distributed File System) or
memory system (e.g., Spark Resilient Distributed Datasets). Unfortunately, support for split-
ting spatial data is lacking. Spatial MapReduce extensions including SpatialHadoop, Hadoop
GIS, or GeoSpark have provided excellent support for spatial operations (Eldawy and Mokbel,
2014; Yu et al., 2015; Aji et al., 2013; Eldawy and Mokbel, 2015). While they add spatial
support for code inside map and reduce tasks, they do not incorporate spatial support for the
programming model itself.

3. The key-value model is designed to apply an operation to each data element. However, many
spatial operations use neighboring data as part of the calculations for each data element (e.g.,
convolution, windowed operations, focal operations). Without significant data duplication
the key-value model does not provide a suitable way to capture spatial neighborhoods as
part of a calculation. Common parallelization techniques such as using shared memory and
memory pointers that reference overlapping data elements are not supported in the key-value
model. While this limitation simplifies the implementation of key-value programming, it also
hampers the ability for spatial operations to share and/or reuse data. This is perhaps the
biggest limitation of MapReduce.

In short, MapReduce has been very successful in many application domains. However, for spatial-
temporal applications MapReduce has several limitations.
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3 Programming Model

The Space-Time Key-Collection model represents a novel programming model for geospatial com-
puting. It is not an extension of MapReduce nor a spatial database management system (DBMS),
and it is not generic or suitable for all domains. Rather, it is a new conceptualization of key-value
programming that uses bounded space-time as a “key” and a collection of spatial-temporal data
that are situated within the space-time bounds as a “value”. In other words, space and time are
first-class citizens in this programming model. Due to the use of space-time the programming
model can leverage topological models such as the 9-intersection model (Egenhofer et al., 1993) for
examining spatial relationships between collections.

3.1 Data Structure: Space-Time Key-Collections

Bounded-space time forms the “key” and spatial-temporal data forms the “value” in a Space-Time
Key-Collection (stkc). They minimally consist of an origin point in space-time (y, x, z, t), spatial-
temporal bounds ([h]eight, [w]idth, [v]ertical height, [d]uration) to form a space-time key (stk), and
spatial-temporal data comprising a [c]ollection of individual spatial-temporal features [f1, f2, ..., fn].
Just as MapReduce is agnostic to value’s data type in a key-value pair, this model is agnostic to the
type of spatial-temporal data in a collection. The construction of a stkc is illustrated below.

stk: ((y, x, z, t), (h,w, v, d))
[c] : [f1, f2, ..., fn]
stkc: (stk, [c])

The programming model assumes that all features are bounded in space and time (i.e., there are
no infinitely sized features in any ST dimension). So features can be bounded using an origin point
(y, x, z, t) represented as the minimum value in each dimension, and a set of bounds (h,w, v, d)
represented as the difference between the minimum and maximum value in each dimension.

Using bounded space-time as a key provides several benefits. First, it provides a straightforward
mechanism to organize data that are spatially and/or temporally proximate, which will often im-
prove data locality in spatial-temporal operations. For example, to support data query and retrieval
data can be organized in collections based on R-tree or quad-tree so they perfectly align with a spa-
tial index. Second, it can be an easy way to reason about parallel data processing if space-time keys
control how data are partitioned and processed in parallel (Figure 1). Third, it decouples the type
of spatial-temporal data (e.g., raster versus vector versus space-time cube) from the computational
system enabling generic support of spatial-temporal computation.

3.2 Data Computation: Sweep Tasks

Sweep tasks are the foundation of data computation in the stkc programming model. They accept
one or more stkc, sweep over the features in a collection applying analytical, modeling, or other
computational processing capabilities, and output one or more stkc. Unlike MapReduce, keys are
bounded space-time so there is no need to have separate map and reduce tasks. Reduce-like sweep
tasks simply output a single feature in a stkc and Map-like sweep tasks output many features in a
stkc.
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Figure 1: Two-Dimensional Space-Time Key-Collection (stkc) example demonstrating four features
in a stkc (upper left), which are split into two stkc (lower right) that each contain two features.
Then, the two stkc being merged back into the original stkc.

For illustration purposes the stkc model is compared to Map, Reduce, and Merge tasks. Map tasks
take a key-value pair and output a list of key-value pairs. The keys and values can be different
(hence k1 to k2). The system combines all values with the same key to a list (k2, [v2]). Reduce
tasks take a key and list of values and output a list of values. Merge tasks take the original key
from reduce (k2) and the list of values [v3] from multiple reduce tasks enabling the system to handle
heterogeneous data. Notice map, reduce, and merge each accept or produce a different type of data
(i.e., a key-value pair, a list of key-value pairs, a key and list of values, or a list of values). Sweep
tasks, on the other hand, accept and output stkc collections (i.e., a space-time key and a collection
of features).

map: (k1, v1) → [(k2, v2)]
reduce: (k2, [v2]) → [v3]
merge: ((k2, [v3]), (k3, [v4])) → [(k4, v5)]
sweep: ((stk1, [c1]), (stk2, [c2])) → [(stk3, [c3])]

The sktc model aligns with existing spatial models such as cartographic modeling (Tomlin, 2013)
and its parallel extension—parallel cartographic modeling (Shook et al., 2016)—which are powerful
spatial data processing frameworks that support many spatial methods and models. In these two
frameworks, the elemental computing tasks input and output spatial data layers so there is a direct
translation to sweep tasks and stkc. However, the drawback of a generic sweep task is that the
system cannot make assumptions about what to do next unlike for map and reduce tasks. For
example, after a map task, the MapReduce system knows to gather and create a list of values for
each key. Instead, we must introduce a way to express how stkc flow between sweep tasks.
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3.3 Data Flow: Postfix Expressions

An expression represents a workflow (or data flow) for a spatial-temporal method or model. For-
mally, expressions use postfix notation in which operators follow their operands (e.g., 12+ rather
than 1 + 2). In the case of the stkc model, operators are compute functions (i.e., sweep tasks) and
operands are data load functions (i.e., data read tasks).

Postfix notation has several advantages for a workflow syntax. First, order of evaluation is always
left-to-right and there is no ambiguity in terms of order of precedence. Second, operators are applied
to values immediately to the left of themselves. This follows intuition in terms of the output of
one operator becomes the input of another operator in a workflow system. Finally, implementing
postfix notation is straightforward. This not only simplifies development, but also makes it easy to
learn in an education setting.

Data flow in the stkc model is handled as a data stack. Each data load operator (e.g., file read)
pushes a stkc onto the stack. Each sweep task pops one or more stkc off of the stack (depending on
the number of parameters). Sweep tasks produce one or more stkc, which are pushed on the stack.
Data store operators (e.g., file write) pop a stkc off the stack and write the data to disk.

4 Implementation

ForEST is a domain-specific programming language For Expressing Spatial-Temporal computing.
Domain-specific programming languages provide expressive power for particular domains and have
been used to parallelize existing spatial data processing frameworks (Shook et al., 2016). Forest
is a proof-of-concept implementation of the space-time key-collection programming model. The
fundamental data structure is the spatial-temporal Bounding Object (Bob), which implements a
stkc. The fundamental compute function is a Primitive, which generally accept one or more Bobs as
input and produce one or more Bobs as output. Primitives serve as sweep tasks. Users can combine
primitive tasks into Patterns using common workflow patterns (van Der Aalst, 2009). Patterns
implement postfix data flow in the stkc model. Importantly, Patterns allow users to declare the
start and end of parallelism using a simple syntax. This new syntax facilitates declarative parallel
execution of Patterns. Many spatial-temporal methods or models can be constructed as a pattern
in a single line of ForEST code. In addition to the language, the ForEST system supports multiple
Engines, which accept a Pattern as input, and manages their parallel execution.

4.1 Bobs

A Bob—spatial-temporal Bounding OBject—is the basic data structure in ForEST. Bobs implement
stkc and have a space-time key and a list of features. Using a list of features as a collection allows
ForEST to support raster data as a list of cells, vector data as a list of points, lines, or polygons, as
well as a multitude of temporal and spatial-temporal data structures. Depending on the data type
additional metadata and indices can be optionally incorporated. Further, since each feature has
a spatial and temporal attribute the ForEST system can split a Bob into multiple Bobs or merge
multiple Bobs into a single Bob. This feature enables the system to organize features spatially and
temporally, which often preserves data locality and thus improves computational performance.
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ForEST can take advantage of point set theory and topological models such as the 9-Intersection
Model (9IM) (Egenhofer et al., 1993) to provide a powerful foundation for geometric operations
comparing interior, boundary, and exterior properties of features (and subsequently Bobs) to derive
spatial relationships (e.g., disjoint, within, touches, overlaps). The 9IM can allow the ForEST
system to reason about Bobs and manage spatial-temporal data in much the same way MapReduce
systems can reason about and manage generic data such as grouping values that share the same
key into a list. The current implementation includes basic support, but this is an area of future
exploration.

There are three key points worth noting. First, Bobs do not need to be minimum bounding boxes
(also called the minimum bounding rectangle, MBR). While oftentimes beneficial for optimization
of computation, the system does not require Bobs to minimally bound their features. This allows
systems to align with common decomposition and indexing schemes such as row decomposition and
quadtree. Forcing MBR on the system would break the assumptions of these approaches. Second,
Bobs can be empty. Again, so ForEST can align with approaches such as quadtrees. Third, it is
possible to have two or more Bobs with the same STKs. Recall, Bobs are merely containers of
features so it does not cause problems if the containers spatially and/or temporally overlap.

4.2 Primitives

A Primitive task is the basic compute function in ForEST. Primitive tasks are executed serially
and take a set of Bobs as input and produce a set of Bobs as output. Primitives are intended
to be the building blocks of methods and models rather than an entire method or model. This
allows for flexible design and development as well as the ability of the ForEST system to parallelize
spatial-temporal computation. Similar to MapReduce, the computation within a Primitive task is
abstracted from the system so Primitives are free to be as simple or complex as a developer needs.
To demonstrate the proof-of-concept, the author along with several students have implemented a
suite of Primitives in the development version of ForEST ranging from raster, vector, space-time
cube, and agent-based modeling operations (Shook, 2018).

4.3 Patterns

A Pattern is an expression of a spatial-temporal method or model. Patterns use a custom syntax
that can be used to declare the start and end of data parallelism. Importantly, Patterns give Engines
flexibility in how or even if parallelism is invoked for spatial methods or models. Equally important,
Patterns remove the need for developers to program in parallel. Ultimately, the goal of a pattern
is to express a parallel spatial-temporal computation without specifying how it will be parallelized.
This is similar to other more familiar declarative languages such as SQL in which queries define
what data is needed, but not how to retrieve it.

In between each primitive is a workflow Connector. ForEST currently supports three common work-
flow connectors: split, sequence, and merge. It is straightforward to support additional connectors,
but these three cover many spatial-temporal applications.
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Name Connector Description
split: < partition Bobs, begin parallelism

sequence: == pass Bob to the next primitive, if enabled maintain parallelism
merge: > gather Bobs, end parallelism

Take the following hypothetical example (A * (B+C)) using the read, add, multiply, and write
primitives:

read(A) == read(B) == read(C) < add == multiply > write(out)

In this case the first three operations (reading A, B, and C) can execute at the same time. The
system would have to preserve the order of the stack (C is above B, which is above A). Then, the
split connector enables parallel computation. This will split the Bobs in the stack and (depending
on the Engine) will run the add task on multiple processing cores. The top two Bobs (i.e., B and
C) are popped off the stack(s) and multiplied. The output Bob (hidden) is pushed back onto the
stack. The multiply primitive then multiplies the two Bobs (i.e. the hidden Bob and A) and pushes
the final result onto the stack. The merge connector triggers the Bobs to be merged and ends
parallelism. Finally, the results are written out using the write primitive by popping off the final
Bob on the stack and writing the data to disk as out. Notice, add and multiply are executed in
parallel, but the developer did not have to specify how the data would be split or how parallelism
would be achieved. Instead they declared their desire for parallelism and the ForEST system handles
the execution details.

Each connector is summarized below:

1. Split declares the start of parallel processing, partitions Bobs, and distributes the partitioned
Bobs to various processing cores. A split operator will also change the spatial extent of each
primitive from the entire spatial datasets (global bounds including all data features) to the
features in the split Bob. Users can pass parameters to change split (e.g., decomposition
method, the granularity of decomposition, etc.), however it is important to note that users
are declaring parallelism and it is up to the compute Engine to actually invoke parallelism.

2. Sequence passes the output of one primitive to be the input of the next primitive. Sequence
can be conceptualized as a UNIX pipe (|) where data is passed from one operation to the
next. Users can avoid parallelism by replacing split and merge operators with sequences. In
this case, the primitives will process all features. This simple change is useful when debugging
codes.

3. Merge declares the end of parallel processing and gathers Bobs to a single core. A merge
operator will also return the spatial extent of the Bob to the entire spatial dataset. Similar
to Split users can pass parameters to Merge for performance tuning.

4.4 Further Details

ForEST is an open source project and available on GitHub (Shook, 2018). It is implemented in the
Python programming language. Preliminary implementations have shown that ForEST can support
multiple computing engines including one non-parallel engine that tiles data to reduce memory load
and parallel engines using shared memory (multiprocessing library), Spark, and Graphics Process-
ing Unit (GPU) through PyCUDA. Preliminary testing in social-environmental applications using
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IPUMS-Terra (formerly TerraPop) (Haynes et al., 2017) and on cyberinfrastructure projects such
as the Extreme Science and Engineering Discovery Environment (Towns et al., 2014; GISandbox,
2018) show promise. Due to space limitations I cannot go into detail on the implementation or
experiments, but I encourage readers to examine the early-stage source code and use GitHub to ask
questions, submit feature requests, or report bugs.

5 Conclusions and Future Work

The space-time key-collection programming model is designed for geospatial computing. This new
programming language rethinks the key-value programming model to use space-time itself as a key
and collections of spatial-temporal data as values. An open source proof-of-concept implementation
called ForEST (Shook, 2018) demonstrates that the model works in practice. Further work is
required to solidify ForEST into a production-level system and examine the theoretical capabilities
and limitations of the programming model. Real world applications such as the Paleoscape Model
(Shook et al., 2015) will be used to further test ForEST. Importantly, future work will test ForEST’s
ability to implement analytics methods as well as geospatial models in the language. This combined
capability of expressing both spatial-temporal analytical methods and models will help it contribute
to the field of Geocomputation and its combined focus on geospatial analytics and modeling.
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