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Abstract

Pattern correlation techniques are commonly used in Particle Image Velocimetry studies to
calculate tracer particle velocity in fluids or gases. The techniques can be further improved and
used to track landscape scale moving thermal patterns in time sequenced infrared images to
estimate a spatial advection velocity field.

This study presents a validation and parametric sensitivity test of commonly used image corre-
lation techniques using data produced from a numerical weather model and field observations
from a longwave infrared camera. The numerical simulations aimed to create three different wind
speed pattern cases to analyze the performance of four different image velocimetry techniques
and compare the estimated velocity field to the model’s velocity field. A sensitivity test was
carried out with various combinations of required user input to find the best performing image
velocimetry techniques. These were then applied to a dataset of surface temperature of an ar-
tificial hockey turf field taken with an infrared (IR) camera to test the algorithms in real world
conditions and to directly compare the estimated velocity to in-situ measured wind velocity.
The velocimetry algorithms are especially accurate when there is low complexity in ow structure
(root mean square error: 0.4: Structural Similarity: 0.81). The comparison of the IR image
velocimetry with the in-situ measurements on the hockey turf field shows accurate representation
of the 10 minute mean wind direction and the mean wind speed with a maximal absolute error of
0.8 for the wind direction. If the comparison is done on a one minute average basis the accuracy
of the image velocimetry decreases when the wind speed drops.
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1 Introduction

Digital image pattern correlation techniques are widely spread in computer vision and spatial flow
visualization studies. The correlation techniques are commonly used as a core algorithm in Particle
Image Velocimetry (PIV) studies to visualize tracer particle movement in gases or fluids through
the image correlation of time sequenced images from illuminated particles (Adrian, 1991; Adrian
et al., 2000; Kompenhans et al., 2007). The application of image pattern correlation techniques to
derive near surface flow velocity in outdoor field settings is relatively new (Takimoto et al., 2011;
Inagaki et al., 2013). Inagaki et al. (2013) applied a PIV correlation technique from Kaga et al.
(1992) to infrared images of a hockey turf field to spatially visualize wind velocity. This proved that
image correlation techniques can retrieve velocity fields from temperature perturbation patterns
within time sequenced thermal images. However computer vision processing algorithms provide
various alternatives to Kaga et al.’s (1992) correlation approach. Additionally the image correlation
algorithms are highly dependent on user input and experience to retrieve accurate measurements.
In the process of developing optimal parametric settings for the four methods this study examines
which correlation approach is optimal for the retrieval of velocity fields from moving patterns in
sequential images and how user-dependent input can be optimized to retrieve accurate spatial

velocity fields under a variety of complex spatio-temporal image property gradients.

Accurate spatial velocity fields are vital for micrometeorological model validation, for estimating
spatial distribution of surface-atmosphere energy flux and the development of new atmospheric
turbulence theories. Additionally the spatial measurement of wind velocity from infrared images
has many practical applications from near-target agricultural meteorology (Katurji and Zawar-
Reza (2016)) to field sport events where spatial wind structure is important (van Hooff et al.

(2011)).

In PIV studies various tests of correlation techniques were carried out to achieve correct particle
displacement estimations for micrometeorological spatial velocity measurements. Kaga et al. (1992)
proposed to use the greyscale difference and Gui and Merzkirch (1996) the minimum quadratic dif-
ference of interrogation windows to estimate velocity vectors. When two sequenced images are used

to estimate particle displacement an interrogation window is a small squared area in both images of



user predefined size. In Image 1 the interrogation window is static whereas in Image 2 it is displaced
within a user predefined area. The commonly used interrogation window correlation method is the
cross-correlation (CC). According to Kompenhans et al. (2007) all mentioned methods are similarly
accurate when applied in a PIV process. However these techniques have not been compared using
either artificial moving patterns from numerical model output or sequenced thermal imagery. The
spatial measurement of velocity fields for micrometeorological research has been accomplished by
smoke visualization and comparison to wind tunnel PIV measurements by Hommema and Adrian
(2003). Takimoto et al. (2011) compared wind tunnel CC-PIV measurements and to an urban flow
model to characterise urban turbulent flow. Another methodology of measuring outdoor velocity
fields is the use of arrays of sonic anemometers (Porte-Agel et al., 2001; Inagaki and Kanda, 2010).
The arrays are used to spatially estimate heat flux and enerergy dissipation. The shortcomings of
these methods are the high workload for the smoke visualization, the flow distortion through the

physical sonic anemometer array and its low resolution due to point measurement sources.

The objective of this study is to develop and test time sequential image velocimetry methods
at spatial and temporal scales that make them relevant to micrometeorological applications. We
analyzed the performance of three standard image correlation techniques and propose a fourth
correlation technique, which uses the structural similarity of the interrogation windows. To assess
the accuracy of each correlation technique under changing user input of interrogation window sizes,
overlaps and search area sizes a sensitivity test was carried out using the output of a numerical
weather model for simulating atmospheric boundary-layer flows at a spatially gridded resolution of
2m. This approach allows for simulating user defined spatial patterns of instantaneous wind speeds

that reflect a variety of known structural complexity.

2 Methods and Data

2.1 PALM Model

The Parallelized Large-Eddy Simulation Model (PALM) is a numerical weather model for simulating
atmospheric boundary-layer flows. PALM is capable of resolving turbulent flow structures smaller

than meso-alpha scale (~ 200km?) with spatial resolutions from 200 m to 0.5 m per grid cell



(Maronga et al., 2015). The resolved turbulent flow field can be a result of natural convection
caused by solar heating of surface or mechanically induced due to flow separation around wind
shear effects and/or obstacles. In this study PALM was mainly used to simulate three different
turbulent boundary layers that produced a varying range of spatial complexity required for the

analysis:

1. No-Wind: A convective atmospheric boundary layer with very weak background wind speeds
that created weak surface wind speeds and a spatial structure with convergence and divergence

patterns.

2. Strong-Wind: A wind-forced atmospheric boundary layer imposed on a convective boundary

layer that created high wind speed gusts

3. Wake-Wind: A turbulent wake produced by vortices being shed in the lee of a cuboid producing

oscillating waves of various windspeeds.

Four different image correlation techniques in various pre-defined user input cases were then applied
to two consecutive PALM simulated windspeed images to calculate the advection wind velocity
field. Then the retrieved advection velocity field was compared to the PALM velocity field. This
sensitivity test was carried out to optimize and test our image pattern correlation algorithms prior

to the application on infrared imagery.

PALMs numerical domain was set up for all three cases with a resolution of dx=dy=dz= 2 meter
where the x direction is base for the u and the y direction is base for the v velocity (See Figure 1).
The domain was set up with a vertical stretch to a larger spacing above 100 meter for the NoWind
and StrongWind cases, above 150 meter for the Wake-Wind case. For the NoWind and StrongWind
case a convective boundary layer with solar radiation of southern hemisphere summertime at 43°S
(12 pm Christchurch) was used. The Wake-Wind case was set up with no radiation process. At
x = 70m, y = 160 m a 20 by 20 by 100 meter block was set to create the turbulent wake for the
Wake-Wind case. In the NoWind and the StrongWind case a cyclic boundary condition was set
following standard methodologies in these types of simulations (Tabor and Baba-Ahmadi, 2010).
The models simulation time was set to 3600 seconds for all cases. Further information about the

model setup can be found in Table 1.



PALM was set up in three different cases as explained above with increasing complexity of flow
structure. The complexity of the flow structure is defined by the advection velocity in one direction
(See Fig 1 a)), the convergence and divergence patterns (See Fig 1 b)) and the wake shedding and
creation of reverse flow (See Fig 1 ¢)). Therefore the lowest complexity is found in the StrongWind
case with initial wind only in u direction and evolving convection (See Fig 1 a)). A more complex
case is a very low wind with strong convection (See Fig 1 b)). The highest complexity was reached

through the Wake-Wind case (See Fig 1 ¢)).

Table 1: PALM further model setup information
Case Name Initial wind speed Initial potential temperature Boundary condition  domain size (x*y*z)m
4.0 m/s surface 293K at surface build up to
increasing to 6 m/s at 100m 296K at 350m, same after 350m
293K at surface

StrongWind Cyclic boundary (x and y) 1024 * 512 * 1574

0.1 m/s at all levels

NoWind . . build up to 296K at 350m, Cyclic boundary (x and y) 1024 * 512 * 1574
in x direction . ! ‘ ‘
same after 350m
Wake-Wind 40 m/s at all levels 293.15K at all lovels Cyelic boundary (y) 1280 * 320 * 1084

in x direction open boundary (x)

2.2 Image Correlation Techniques

To produce the advection velocity fields (WSadv) from different image correlation techniques the
near-surface (2 m AGL) two dimensional horizontal windspeed was calculated from the PALM u
and v wind vector components (see Figure 1). The PALM simulations were allowed to run for 3600
seconds and the resultant wind speed pattern at time = 3542 seconds was used after allowing the

model to fully develop the required turbulent boundary layer.

A velocity vector is determined by comparing two interrogation windows of the same user-defined
size set in the images. An interrogation window is a raster window of a user-defined size which
is moved across Image 1 (Figure 2). For the calculation of one velocity vector the interrogation
window in Image 1 is static while the interrogation window in Image 2 is shifted within the user-
defined search area size around the interrogation window size. The number of shifts within the
search area size is determined by the user-defined overlap of the interrogation window sizes. A
higher overlap therefore leads to a longer computation time but increases the probability to find a
fitting displacement interrogation window. A larger search area size divides the image into fewer
search areas and leads to less initial set interrogation windows because of the higher search radius

around each interrogation window. For each displaced interrogation window a comparative metric is

ot
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Figure 1: Flow Structure of PALM at 3542 seconds of total 3600 seconds simulation time (view
from top on the XY-Plane) for a) StrongWind case b) NoWind case and ¢) Wake-Wind case. The
background color emphasizes the wind speed. The vectors the wind direction. Vector lengths are
picked according to the wind speed. White/black colored vectors used for contrast reasons except
for the enlarged part in c¢) where the white arrows emphasize the return flow towards the obstacle
in the Wake-Wind case. The black arrows on the side show the directions referred to throughout
the manuscript. 6



calculated to find the window with the maximum correlation (See Figure 2). All correlation values
were saved in a correlation matrix to find peak correlation position in reference to the interrogation
window in Image 1 (See Figure 2). This peak pixel correlation defines the major advection velocity
vector and its direction. Due to a gradient from the peak correlation position to the neighbouring
pixels a sub-pixel peak correlation defines a minor direction within the found maximum peak pixel
(Kompenhans et al., 2007). Sub-pixel peak positions were calculated through gaussian fitting using
the openPIV Python package (Taylor et al., 2010). For the calculation of WSadv four different
correlation techniques were tested from which three were previously used in the literature and one

new one is presented for this application:

e The cross-correlation method through Fast-Fourier transform which is widely used in Particle
Image Velocimetry (Adrian, 1991) (CC-Tech). The cross-correlation determines a correlation
matrix between two interrogation windows and finds the pixel that correspond to the peak

correlation (Kompenhans et al., 2007).

e The grey-level difference method which was used for Thermal Image Velocimetry (Inagaki
et al., 2013; Kaga et al., 1992) (Greyscale-Tech). This method uses the minimum accumulated

absolute difference of the interrogation windows to find the pixel of displacement.

e The minimum Quadratic difference (MQD) of the interrogation windows(Gui and Merzkirch,
1996) (SQM-Tech). This method uses the minimum squared difference of the interrogation

windows to find the pixel of displacement.

e The Strucual Similarty measure(SSIM) of the interrogation windows which was newly eval-
uated using this context (SSIM-Tech). This method finds the maximum SSIM value of the
interrogation windows to find the pixel of displacement. For more information about SSIM

refer to Wang et al. (2004).

The impact of the window size, search area size and window overlap was tested in a sensitivity test
to find the optimal parameter settings and correlation technique. SQM-Tech although similar to
Greyscale-Tech was added to the analysis to have a comparison to the performance of Greyscale-
Tech. Greyscale-Tech builds on the difference of the values of the interrogation windows whereas

SQM-Tech uses the square root of the squared difference. Therefore SQM-Tech has the possibil-
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Figure 2: Conceptual diagram summarizing the steps required for determining advection velocities
from image correlation techniques 2-4. The preprocess of calculating windspeed images from PALM
is included. The concept of CC-Tech is slightly different and can be found in Kompenhans et al.
(2007)




ity to increase accuracy compared to Greyscale-Tech due to the increase of weight on large pixel
differences. SSIM-Tech is well-known in the image processing community but to the authors knowl-
edge has not been used for image velocimetry correlation. It is mainly accounting for structural
inter-dependencies of pixels whereas the other techniques estimate absolute errors (Wang et al.,

2004).

2.3 Sensitivity test and accuracy assessment

According to Kompenhans et al. (2007) the success of image velocimetry depends on the user deter-
mined overlap and window size. Therefore a sensitivity test of all PALM cases and all correlation
techniques was carried out using various window sizes, search area sizes and window overlaps (see
Table 2). The various overlaps were picked according to the minimum reccomended overlap of 50
% (Kompenhans et al., 2007). The search area sizes were selected values within 1.5 * window size
to 3 * window size. This created 1377 velocity field comparisons. These were qualitatively assessed
using the vector images and quantitatively analysed using the root mean square error (RMSE) and
the Structual Similarty Measure (SSIM). The best performing algorithms were applied to the field
experiment dataset descibed in section 2.4.

Table 2: Tested combinations of window sizes, overlaps and search area sizes. window and search
area size indicates the number of pixels in one side of a square.

Window size Overlaps Search area sizes
8 7,6,5,4 12, 16, 24, 32
12 11, 10,9, 8,7, 6 18, 24, 32, 36
16 15, 14, 13, 12, 11, 10 20, 24, 32, 40, 48
24 23, 22, 21, 20, 19, 18 30, 36, 48, 56, 72

20 35, 34, 33, 32, 31, 30,
29, 28, 27, 26, 25, 24, 18
48 47, 45, 41, 40, 36, 32, 30, 24 64, 72

42, 54, 72




2.4 TURF-T1 Data and Analysis

The Time seqUential theRmal inFrared-Turbulence (TURF T1) was a field campaign carried out
on an artificial hockey field (50 by 100 meters) in Rangiora, New Zealand in January 2019. The
goal of this field campaign was to develop precise image velocimetry techniques that are suitable
for landscape scale near surface mean and turbulent wind velocity. TURF T1 with its homogenous
surface cover type, lack of surface moisture and homogeneous roughness provides optimal condi-
tions to develop this methodology. Additionally the work is highly comparable to previous study
from Inagaki et al. (2013) and Christen et al. (2012). The sonic anemometers were placed on one
tower 0.5 (IRG1) and 1.5 (IRG2) meter above ground (see Figure 3 B)). The 3-dimensional wind
velocity measurements were carried out at 60 Hz and averaged to 20Hz by the data logger and
were synchronized with a GPS clock to match the aerial infrared acquisition. Sonic anemometer
data were tilt corrected with the planar fit method to address uncertainties in the orientation of
the sonic anemometers (Wilczak et al., 2001). In this experiment with flat terrain a wind velocity
extrapolation was carried out to estimate the very-near surface wind velocity by the usage of the
logarithmic wind profile. This assumes a neutrally stratified atmosphere which will be analyzed
using the two sonic anemometers. For the logarithmic profile conversion a height of 1.5 cm and a

roughness length parameter Zo of 0.01m was used (Stull, 2011).

The infrared dataset was collected using an unmanned aerial quadcopter flying at a height of 60
meter above the surface equipped with an Optris Infrared Camera (PI450, resolution: 640 x 480
pixels) using a wide angle lens (80°x 54°). Due to the battery life of the Quadcopter a single
experiment time was limited to around 10 minutes. A total of five experiments were carried out. At
the time of the experiments the weather was partly cloudy with a north easterly wind with a mean
wind speed of 1.3 m/s and around 22 °C air temperature. The thermal images were retrieved at a
frequency of 80 Hz. In the preprocessing phase the images were subsampled to 1 Hz to allow enough
temperature change between sequential images. Despite the use of an inertial stabilizer (3-axis
gimbal) there appeared to be residual image shaking that was taken out with subsequent software-
based stabilization. In order to stabilize the numerical temperature values the original, shaky raster
data was converted to RGB color raster images. Then the images were stabilized in RGB color

values using Blender (Blender Online Community, 2019). To retrieve the temperature values back

10



from the stabilized images a random forest model was trained on each original temperature RGB
color values image pair. The stabilized RGB color images were used as a predictor to retrieve
back stable temperature value rasters. To use the infrared imagery in the developed velocimetry
algorithms Inagaki et al. (2013) suggested high pass filter should be applied for each local time
series (pixel) of the infrared imagery. The high pass filter highlights the anomalous temperature
pattern perturbations that are induced by the near-surface actual wind velocity and solar heating.

The resulting temperature perturbations reveal moving patterns which can be tracked.

Based on the SSIM value the most successful window size - overlap - search area size combinations
of the PALM sensitivity test were obtained and used for the image velocimetry calculation of the
infrared imagery (see Table 3). The comparison of the image velocimetry and the sonic anemometer
data was carried out using a 5 by 5 matrix of vectors closest to the position of the sonic anemometer
tower. Fach of these vectors refer to one fixed interrogation window in space and therefore are seen
as an independent, virtual velocity measurement from image velocimetry. The 25 closest vectors
were picked because the lowest available resolution allowed to retrieve a set of vectors close to the
sonic anemometers. We refer to the comparison of each of the 25 image velocimetry vectors to the
sonic anemometer as single vector comparisons. From each of the 25 vectors the 10 minute wind
vector average was calculated and compared to the 10 minute extrapolated mean of IRG2. On a
higher frequency domain of 1 minute the prevailing wind direction of IRG2 was scattered in a sector
of +/-30°in wind direction. Therefore the best performing 10 minute single vector comparisons
were defined to lie in an accuracy range of +-30 °of the IRG wind direction mean. To analyze the
vector performance in a higher frequency a one minute mean was applied to the best performing 10
minute mean single vector comparisons. The one minute mean image velocimetry wind speed and
wind direction vectors were then compared to the extraploated near-surface one minute mean wind

velocity of IRG2 in a single vector comparison as well.

11
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Figure 3: A) Picture of TURF T1 experiment on a hockey turf field. White arrow indicates mean
main wind direction. The yellow star shows the position of the sonic anemometer tower. The black
square emphasizes the footprint of the thermal imagery. The black arrows show the wind direction
coordinate system. B) side view on the sonic anemometer tower C) Quadcopter with Optris infrared
cameras
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3 Results and Discussion

3.1 PALM Sensitivity Test

The sensitivity tests enabled the qualitative and quantitative analysis of the velocity fields created
by the four different image correlation techniques and its various combinations of window sizes,
overlaps and search area sizes. The number of vectors decreases with increasing window size,
limiting the number of vectors available for analysis when larger search areas are used. This created

some unuseful cases in the smaller Wake-Wind case domain which were eliminated.

A direct comparison between the derived advection velocity and the models velocity shows similar
wind patterns in all cases (see Fig 4a) b) and c)). Furthermore the determined wind speed is

comparable with the model’s wind speed.

13
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Figure 4: Direct comparison of greyscale image velocimetry technique for a) StrongWind case b)

NoWind case and c¢) Wake-Wind case. The white arrows in b) are only used for contrast reasons.
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Evaluation metrics showed that the highest SSIM comparison values could be reached in the Strong-
Wind case followed by the NoWind case and the Wind-Wake case. The highest SSIM value and
the lowest RMSE value was reached by Greyscale-Tech. It is evident that for Greyscale-Tech,
SQM-Tech and SSIM-Tech the maximum available overlap is creating the most accurate image ve-
locimetry pattern (see Table 3). The analysis suggests that the optimal overlap for CC-Tech is ~3/4
of the window size. The reason for this can be found in the slightly different working mechanism
which directly correlates the search area with the interrogation window. A larger overlap will create
more autocorrelations between neighbouring vectors in CC-Tech and the chance for error vectors is
increased. This is traditionally not the case when using the cross-correlation on illuminated particle
images where illuminated peak pixels are available. However the images in this study do not provide
such illuminated pixels. Therefore the PIV CC-Tech algorithm is creating the lowest accuracy in
this analysis (see Table 3).

Table 3: Best perfoming image velocimetry algorithms for each case - correlation technique combi-
nation

Method Case Window Size Overlap Search Area Size SSIM RMSE
CC-Tech StrongWind 36 25 42 0.61 1.36
Greyscale-Tech  StrongWind 24 23 48 0.82 0.58
SQM-Tech StrongWind 16 15 40 0.81 0.66
SSIM-Tech StrongWind 24 23 56 0.81 0.61
CC-Tech NoWind 36 24 42 0.39 0.74
Greyscale-Tech NoWind 24 23 56 0.77 0.37
SQM-Tech NoWind 36 35 54 0.74 0.42
SSIM-Tech NoWind 24 23 56 0.74 0.38
CC-Tech Wake-Wind 3 7 16 0.25 1.26
Greyscale-Tech  Wake-Wind 24 23 48 0.5 1.06
SQM-Tech Wake-Wind 24 23 48 0.52 1.03
SSIM-Tech Wake-Wind 24 23 48 0.52 1.03
3.2 TURF-T1

The TURF-T1 experiment dataset enabled the application of the image velocimetry algorithms to
an infrared dataset and its comparison to in-situ measurements. The comparison of the 10 minute
mean vectors close to the sonic anemometer show similarities in all tested cases (see Table 4). The

algorithm with the lowest combined relative error in wind speed and wind direction for the 10-



minute mean comparison was a vector of Greyscale-Tech (window size: 16 , overlap: 15, SA: 32; see
Table 4). All other techniques provided very accurate single vector comparisons as well. Most of the
other single vector comparison inaccuracies were manifested in a large wind speed error. This error
depends largely on the estimation of the logarithmic wind profile which was not properly assessed

in this experiment. Therefore the error in wind direction is more informative.

For the one minute mean all available 10-minute mean cases within +-30° accuracy in wind direction
were tested. The result shows acceptable accuracy for the wind direction with CC-Tech, Greyscale-
Tech and SQM-Tech. In the qualitative analysis CC-Tech is producing distinctly more error vectors
then Greyscale-Tech and SQM-Tech. Therefore the analysis was focused on Greyscale-Tech and
SQM-Tech. The accuracy of the 1 minute mean wind direction of Greyscale-Tech stands out in
Minute 1 - Minute 3 and Minute 5 - Minute 8 (see Table 5). Especially in Minute 4 and Minute 9
when the wind speed evidently drops the Image Velocimetry algorithm is not capable of delivering
correct wind directions (see Table 5 red numbers). This might be connected to the nature of the
artificial hockey turf which can cause a thermal inertial delay through the capability of storing

thermal energy for a short period of time in a heating phase when the winds are weak.
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The wind speed drop can be noticed in the one minute mean streamline plots as well (see Figure
5). It is evident that especially in low wind phases there are not enough images to track the wind
pattern footprint. Additionally, the streamline plots show divergence and convergence patterns
which indicate cooling phases through divergence fields and heating phases through convergence
fields. The assessment of these phenomena will need further analysis and data and a more adaptive
algorithm towards the size and shape of the coherent flow structures and the inertial thermal delay
of the surface type. Furthermore the current image velocimetry algorithms create unequal numbers
of velocity vectors due to different search area sizes. The goal here is to find an intelligent algorithm

to adapt the image velocimetry towards a continuous time/space velocity coverage.

4 Conclusion and Outlook

In this paper we presented a comparison of four different image velocimetry techniques which were
applied to an artificial, 2-dimensional wind velocity pattern to find the optimal algorithms for the
application to a thermal infrared dataset comparable to Inagaki et al. (2013). It is evident that
all velocimetry techniques can successfully retrieve wind velocity fields from the artificial velocity
patterns. The cross-correlation technique, commonly used in PIV, is not as accurate as the other
tested techniques. The main reason for this might be the creation of more error vectors and the
missing illumination peak pixels which are typical for the use case of the PIV images. Although
the CC-Tech has been widely tested with illuminated particle images, hence we further recommend
using it for PIV. An overall recommendation for the usage of the image velocimetry techniques can

be found in Table 6.

Table 6: Correlation technique recommendation

Method Cases recommended for
CC-Tech PIV /illuminated particle images
Greyscale-Tech StrongWind/ NoWind/ infrared images

SQM-Tech StrongWind/ NoWind/ WakeWind/ infrared images
SSIM-Tech StrongWind /NoWind/WakeWind/ infrared images

Furthermore the application to the infrared dataset from the Time seqUential theRmal inFrared-

Turbulence (TURF T1) campaign agreed well with the sonic anemometer measurements within 1%
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Figure 5: Minutely mean of temperature pertubations including wind patterns. Evident is the wind
speed drop in Min 4 and Min 9 and the wind speed increase in Min 5.
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relative error for the best performing correlation technique in the 10 minute mean wind speed and
direction comparison. The most successful combination of window size, overlap and search area
sizes for this use case was 16/15/32 with the greyscale correlation technique. The one minute mean
comparison of the Image Velocimetry and the sonic anemometers shows that with weak winds the
image velocimetry algorithm can not cover the wind direction properly. This might be connected
to a thermal inertial delay of the artificial hockey turf field which is capable of storing energy over
a short period of time and creating a time response lag in subsequent infrared images. This will be

further assessed in future studies to better extract the turbulent wind information.

Further work with the TURF T1 dataset will allow better assessment of the accuracy and perfor-
mance of the turbulent spatial velocity field especially in higher frequency domains through the
application of high order statistics on the infrared velocimetry. Additionally further development of
the image correlation techniques will lead to a higher resoluted image velocimetry. Other TURF T1
experiments were additionally equipped with a near surface thermocouple array which allows the
closer assessment of surface-atmospheric turbulent fluxes their spatial measurement. Lastly we aim
to validate the existing footprint models for sonic anemometers with the spatial image velocimetry

technique.
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