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Abstract 

Sustainable forest conservation and management practices require highly resolved and 

accurate maps of forest types. Extrapolation of field data, however, cannot achieve the 

necessary level of detail. The joint use of space-based optical imagery and structural 

information from synthetic aperture radar (SAR) and canopy metrics derived from air-

borne Light Detection and Ranging (LiDAR) facilitates detailed classification of forest 

types. We present a segmentation-based support vector machine (SVM) classification using 

data from ESA’s Sentinel-1 and 2 missions, ALOS PALSAR and airborne LiDAR to create 

a map of structural types within indigenous forest in Greater Wellington, New Zealand. 

The model is evaluated using k-fold cross-validation with up-scaled field data. The highest 

classification accuracy of 80.9% is achieved for bands 2, 3, 4, 5, 8, 11, and 12 from 

Sentinel-2, the ratio of bands VH and VV from Sentinel-1, HH from PALSAR, and mean 

canopy height and 97th percentile canopy height from LiDAR. The classification based on 

the optical bands alone is 73.1% accurate. Our high-resolution regional map of structural 

forest types is fit-for-purpose for conservation management and we show that the inclusion 

of structural information from SAR and LiDAR can improve forest classification by 7.8%. 
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1. Introduction 

Indigenous forests cover 24% of New Zealand [Wardle et al. 1991], primarily in mountainous and hilly 

terrain, and provide valuable ecosystem services including recreation, provisioning of wild foods as 

well as climate and erosion regulation [Dymond et al. 2004]. Maps of forest types can be used to address 

a wide range of ecological questions relating to sustainability of ecosystem services and conservation 

management. However, no up-to-date national map of forest structural types exists at an appropriate 

level of detail. EcoSat Forests [Shepherd et al. 2005], which is a national map of indigenous forest 

classes in New Zealand, is published at 1:750,000 and the Land Cover Database (LCDB) [Dymond et 

al. 2017] for New Zealand only has one indigenous forest class. 

In this study, we produce the first high-resolution regional map of forest structural types in New Zealand 

by developing a segmentation-based support vector machine (SVM) classification model and we 

investigate how the classification using Sentinel-2 may be improved with the addition of other imagery 
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relating to vegetation structure. We consider radar backscatter from Sentinel-1 (C-band) and PALSAR 

(L-band) and canopy height metrics from airborne LiDAR. 

2. Study area 

The Greater Wellington region in the North Island of New Zealand (Fig. 1), has 23% of its 812,000 ha 

of land covered in indigenous forest. Most of the indigenous forest is now confined to the protected 

mountainous areas of the Tararua, Rimutaka, and Aorangi ranges. Many remnants of indigenous forest 

are spread throughout the rest of the region. The forests of the region are dominated by various mixtures 

of species from three groups: conifers, all from the Podocarpaceae family; broad-leaved evergreen 

species from a wide range of families; and Southern beechs (Nothofagaceae). Our classification focuses 

on the five combinations that occur in the Wellington region: Broadleaved-podocarp forest, Beech-

broadleaved-podocarp forest, Beech-broadleaved forest, Broadleaved forest, and Beech forest. 

 
Figure 1: Wellington region with indigenous forest in dark green. Indigenous forest occurs primarily in the 

Taraua, Rimutaka, and Aorangi mountain ranges. Map grid is the New Zealand Transverse Mercator. 

3. Methodology 

A cloud-free mosaic of the Wellington region (99.5% cloud free) was produced by extraction of cloud-

free pixels from Sentinel-2 scenes, with priority given to dates nearest the middle of November 2017. 

The mosaic was then segmented into areas of similar spectral signatures (Fig. 2) with a minimum 

mapping unit of 1 ha [Shepherd et al. 2019]. The segments are used as a framework for estimating 

robust means of Sentinel-1, Sentinel-2, and PALSAR imagery, and of canopy height from LiDAR data 

and together with the ground truth data make up the test and training data set for the SVM classification. 

An object-based classification approach has several advantages over pixel-wise classification for forest 

mapping: (a) it better captures spatial homogeneity and is able to describe variance within segments, 

i.e. forest structure, (b) it is more robust with higher signal-to-noise ratio due to spatial averaging which 
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is especially important for SAR imagery and (c) increased speed due to fewer sample points. The canopy 

height metrics (mean and 97th percentile) were derived from data collected during an extensive LiDAR 

survey in 2013 and 2014 over the Wellington region with a minimum point density of 1.3 points/m2 and 

a vertical accuracy of ±0.15 m. The SAR imagery consists of: (a) a median image of Sentinel-1 SAR 

backscatter values (VV, VH and VV/VH) for the year 2017 and, (b) a 2007 mosaic of ALOS-PALSAR 

backscatter (HH, HV, HH/HV).  

  

   

Figure 2: Sentinel-2 image mosaic segmentation result: original Sentinel-2 reflectance (left 

column), resulting spectral segments (centre column), spectral segments coloured with mean 

reflectance (right column). 

Field data from 580 vegetation plots in the Wellington region which have tree species observations 

were extracted from the National Vegetation Survey database [Wiser et al. 2001] and summary statistics 

were computed, such as the species abundances and vegetation alliance to which the plot belongs. The 

data was recorded between 1962 to 2017 with 87% of the plots being measured since 1980. These 

summaries then informed the assignment of the plot to a forest structural type. Polygons of 

homogeneous structural types were drawn around the forest plots and intersected with the spectral 

segments derived from the Sentinel-2 mosaic. It is not expected that the forest types changed during 

this timeframe and, thus, the acquisition dates of the field and remote sensing data present no significant 

source of uncertainty for the forest type classification.The R-software package e1071 is used for the 

SVM classification as interface to the SVM implementation in the LIBSVM software [Chang and Lin 

2001]. Different SVM classification settings were tested using a systematic sensitivity analysis of model 

parameters. However, more complex parameters, e.g. radial basis function kernel with highly optimized 

penalty parameter, C, did not lead to significant improvements and, thus, a linear model with C=1 
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achieving comparable model performance was chosen. The feature selection was performed using a 

recursive leave-one-out approach. We assessed the accuracy of each model performing five-fold cross-

validation against the ground truth data set, where 80% of the ground data is assigned to training and 

20% to test data. 

4. Results 

The cross-validation accuracy is 72.3% when using all relevant optical bands. Sentinel-2 bands 6, 7 and 

8a were omitted as they did not add information to the classification. When adding CHM metrics to the 

optical bands the test accuracy is 78.6%, and then adding significant radar bands to the optical and CHM 

metrics leads to a final test accuracy of 80.9%. The addition of SAR and LiDAR metrics did not add 

much computational overhead to the SVM classification due to the object-based approach. The final 

SVM classifier was trained on all locations where ground data was available and then applied to all the 

image segments of indigenous forest in the Wellington region (according to the Land Cover Database) 

to produce a regional map of forest structural types (Fig. 3). The classified map provides information 

on area fractions of each structural type in the region and the results can be further separated into tree 

height classes. 

 

Figure 3. Forest structural types following SVM classification of spectral and structural information from 

Sentinel-1 and 2, PALSAR and LiDAR in transect across the Tararua ranges. Map grid is the New Zealand 

Transverse Mercator. 
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4. Conclusions 

We presented a feasibility study of combining spectral and structural data from different sensors to aid 

forest classification. The resolution and classification accuracy of the produced map of forest structural 

types for indigenous forest in Greater Wellington are sufficient for many conservation management 

applications. The achieved map resolution (1 ha minimum mapping unit) represents significant 

improvement over current maps of forest types (EcoSat Forests). National application of the presented 

method will be possible in several years once national LiDAR coverage is achieved and a national 

canopy height model is available. Future work will investigate the use of temporal spectral signatures 

and indices, to further increase mapping accuracy and associated contribution to management 

applications. 
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