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Abstract

RCC*-9 is a recently developed member of the region connection calculus family, and was in-
troduced to represent topological relations in multidimensional space. In this paper, we discuss
and address an inconsistency found in the RCC*-9 formalism, and propose a modified version
of RCC*-9 which we call RCC*′-9. Furthermore, we prove the jointly exclusive and pairwise
disjoint property of relations and theorems in the lattice of relations in the modified theory.
Finally, we confirm the consistency of RCC*′-9 using a finite model finder.

Keywords: Multidimensional topological space, Region Connection Calculus, Qualitative spa-
tial reasoning, Topological relationships.

1 Introduction

The formalization of topological relations has been an important research topic in the Geographical
Information Systems (GIS) and Qualitative Spatial Reasoning (QSR) literature. These relations
enable certain kinds of spatial querying, analysis and reasoning in GIS, such as whether two features
are in connected and if so what type of connection exists between them (e.g. whether one feature is
proper part of the other, or whether two features touch or overlap each other). Some examples of
topological relations include: a polygon representing a national park overlaps with several adjacent
polygons representing different countries; census blocks lie entirely within a census tract; parcels,
have edges that touch each other.

There are two main approaches to modeling topological relations between spatial entities in the
literature. The first of these follows an intersection strategy, and includes the 9-intersection model
(9-IM) (Egenhofer and Herring, 1991) its dimensionally extended version (DE-9IM) (Clementini
et al., 1994), and the calculus-based method (CBM) (Clementini et al., 1993). Their spatial features
consist of points, line segments and areas, thereby describing spatial objects in terms of their
dimension which is similar to geometric data standards, such as the Open GeoSpatial Consortium
(OGC). 9-IM (and DE-9IM) considers each object’s interior (o), boundary (δ) and exterior (e) parts
and then represents the spatial relation between pairs of objects using a matrix in which rows
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represent the aspects (interior, boundary and exterior) of one object and columns represent the
aspects of the other object, cell values being 0 or 1, indicating whether or not the object aspects
intersect (dimension of the common part is also considered in DE-9IM). Because it considers every
possible combination of these three aspects of an object, 9-IMs1 introduce a large number of relations
in a multidimensional space, and are thus not very user friendly. Also, it can only extract further
knowledge over areal features. CBM reduces the number of relations by excluding the exterior
aspect (i.e. F1o-F2e, δF1-F2e, F1e-F2e intersections are omitted)2. Instead, it describes the other
intersections (interior and boundary) in terms of the participant objects (i.e., whether the common
part is equal to one of the participants). Although it introduces a set of practical relations for
human use, it does not support qualitative reasoning.

The second main approach adopts axiomatic systems such as (Clarke, 1981; Clark, 1985; Randell
and Cohn, 1992) to represent topological relations. These systems are not only capable of intro-
ducing a set of relations for end users, but also supporting automated reasoning, i.e., inferring the
existence of the relations to additional, unnamed entities, over all of the features in the spatial
domain either by constructing a composition table based on the set of finite jointly exclusive and
pairwise disjoint (JEPD) relations or directly through automated reasoners such as as first-order
theorem provers or finite model finders. However, with few exceptions (Gotts work (Gotts, 1996),
Galton’s work (Galton, 1996) and CODI (Hahmann and Grüninger, 2011; Hahmann, 2018)) they
only accept equidimensional spatial entities (e.g., only areal features) in their domain. For instance,
equidimensional axiomatic systems are not able to describe a topological relationship between a
road and park, if these objects are represented as a one-dimensional and two-dimensional spatial
features, respectively, in a geographical dataset.

The development of a comprehensive theory of topological relations to overcome the respective
shortcomings of the intersection approach (a large number of relations without a practical rea-
soning strategy) and axiomatic systems (inability to handle objects of different dimensions in the
spatial domain) has long been an open problem in GISience (Galton, 2004). Much existing work
(Gotts, 1996; Galton, 1996; Hahmann and Grüninger, 2011; Hahmann, 2018) on extending the ax-
iomatic approach to a truly multidimensional theory has focused on developing a first-order logical
axiomatization that affords reasoning with theorem provers. This work studies an alternative ap-
proach, the RCC*-9 (Clementini and Cohn, 2014), which more closely follows the early work in
qualitative spatial reasoning by aiming to identify a set of JEPD relations to support composition
based reasoning with the help of a composition table, which allows simply looking up the results of
combinations of spatial relations. A second notable difference is that unlike (Gotts, 1996; Galton,
1996; Hahmann, 2013), (Clementini and Cohn, 2014) does not include a predicate (or predicates)
for comparing the dimension of the participant entities. (Hahmann, 2018) includes a primitive
relation of “lesser or equal dimension” and (Gotts, 1996; Galton, 1996) define similar relations in
their formalism. RCC*-9 (Clementini and Cohn, 2014) aims to define a multidimensional theory
without any dimensional comparison tool. However, a closer analysis of the relations in RCC*-9
reveals that they do not represent the expected spatial configuration, which means that the relations
are not JEPD and therefore do not satisfy the lattice of the relations. In this paper, we modify
the treatment of topological relations among multidimensional features introduced in RCC*-9 to
address this problem.

This paper is structured as follows. In Section 2, we explain RCC-8 and RCC*-9 as homogeneous

1Although the earlier version of 9-IM (Egenhofer and Franzosa, 1991) is not for multidimensional cases, it follows
the same strategy. However, it uses rules to eliminate unnecessary combinations.

2F1 and F2 are two sample spatial features.
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and heterogeneous dimensional theories in the region connection calculus framework, and distinguish
their attributes and capabilities. In Section 3, we focus on RCC*-9’s formalism to explain its
weaknesses and propose a solution. Theorems of JEPD properties and a lattice of relations are also
proved over the solution. Finally, we check the consistency of the whole formalism in Section 4.
Possibilities for extending this work are discussed in Section 5.

2 Region Connection Calculi (RCC)

RCC is a family of qualitative representations of topological relations between regions, and is used
for constraint-based qualitative spatial reasoning. It has been extended in various directions, and
in the following sections, we review one of the most well-known members of this family, RCC-8, and
a more recent multidimensional version, RCC*-9, which is the focus of the current work.

2.1 RCC-8

RCC-8 (Randell et al., 1992) proposed a point-free topological space. Entities of the domain are
known as regions in this theory. The regions are (non-empty) chunks of space occupied by physical
objects. There is no dimensional difference between the regions and the universal embedding space
(zero co-dimension). Moreover, every region only consists of equi-dimensional parts (regular subsets
of the space). Also, there is no requirement for the regions to be internally connected (multi-piece
regions are permitted).

RCC-8 is based on a single primitive binary relation: C(x,y), read as ‘x connects with y ’, which
is reflexive and symmetric. This relation holds when there is an overlap between the closures3 of x
and y, that is, when cl(x )∩cl(y)6= ∅.

Based on the C relation, the additional topological relations shown in Figure 1 are defined. Among
them, a set of eight relations (numbered relations in Figure 1) form jointly exhaustive and pairwise
disjoint (JEPD) set of relations, called base relations. It means that each pair of spatial regions of
the considered domain is in exactly one of the eight JEPD relations. Since the spatial domain is
indefinite, reasoning techniques mostly rely on verified composition of two base relations. So, an 8
by 8 composition table of base relations has been constructed for RCC-8.

Furthermore, a set of Boolean operations, including sum, product, difference, and complement

are defined in the logical axiomatization of RCC. The domain is closed under these operations, as
guaranteed by the introduction of the NULL entity, being defined as the product of the discrete
regions in the domain. Likewise, all the regions are connected to a specific region known as the
universal region which is an upper bound of the domain.

2.2 RCC*-9

RCC*-9 (Clementini and Cohn, 2014) extends RCC-8 by admitting the coexistence of regions of
heterogeneous dimensions4 Indeed, the regions are not lumps of space filled by physical objects as

3In point-set topology, the closure of a subset S of points in a topological space consists of all points in S together
with all limit points of S.

4The reason for the asterisk in the name of RCC*-9 does not only indicate a change in the number of relations in
comparison to RCC-8, there is also an additional spatial primitive that the new calculus is able to deal with.
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1. DC(x, y) ≡def ¬C(x, y) (x disconnected from y)
P(x, y) ≡def ∀z[C(z, x)→ C(z, y)] (x is part of y)
PP(x, y) ≡def P(x, y) ∧ ¬P(y, x) (x is proper part of y)

2. EQ(x, y) ≡def P(x, y) ∧P(y, x) (x equals to y)
O(x, y) ≡def ∃z[P(z, x) ∧P(z, y)] (x overlaps y)
DR(x, y) ≡def ¬O(x, y) (x is discrete from y)

3. NTPP ≡def PP(x, y) ∧ ¬∃z[EC(z, x) ∧ EC(z, y)] (x is non-tangential proper part of
y)

4. TPP ≡def PP(x, y) ∧ ∃z[EC(z, x) ∧EC(z, y)] (x is tangential proper part of y)
5. PO(x, y) ≡def O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) (x partially overlaps y)
6. EC(x, y) ≡def C(x, y) ∧ ¬O(x, y)] (x externally connected to y)

Pi(x, y) ≡def P(y, x) (y has part x )
PPi(x, y) ≡def PP(y, x) (y has proper part x )

7. TPPi(x, y) ≡def TPP(y, x) (y has tangential proper part x )
8. NTPPi(x, y) ≡def NTPP(y, x) (y has non-tangential proper part x )

Figure 1: Defined relations in the RCC-8 from Randell and Cohn (1992)

they are in RCC-8. They are represented based on the terminology of the features in the OGC
(OGC, 2010), and can be points, linear or areal features. It is assumed that linear features are
topologically closed (i.e. bounded by two, possibly coincident, endpoints), and that areal features
are regularly closed (i.e. bounded by a single or multiple linear regions). To follow the OGC
standard, objects with holes or multiple parts must also be supported.

The theory not only has the C relation as a primitive, but also utilizes a second primitive relation,
B(x,y), read as ‘x is boundary of y ’, such that x must be a proper part of y (i.e. ∀x∀y B(x,y) →
PP(x,y) is an axiom). So, the boundary of an areal feature is its limiting closed curve, and the set
of endpoints are considered the boundary of a linear feature. A point (or set of points) does not
have any boundary.

Based on these primitive relations, the set of spatial relations shown in Figure 3 are defined. The
definitions of DC, P, PP, and EQ are preserved from the RCC-8. However, the introduction of
the new primitive relation causes some alteration in the definitions of other relations in RCC-8
such as DR, NTPP, TPP, NTPPi, TPPi, O, PO, and EC. Moreover, the boundary relation
facilitates the introduction of a new spatial relation, CR(x,y), read as ‘x crosses y ’, which can
only hold between two linear features. The nine numbered relations in Figure 3 have again the
JEPD property. Clementini and Cohn (2014) provide a composition table for RCC*-9 (see Figure
4 on p.14), and RCC*-9’s composition table has an extra row and column relative to the RCC-8
composition table, corresponding to the CR relation. Also, whenever the composition of the two
relations returns an overlap relation (or its special case, PO) in RCC-8’s table, there is a possibility
of seeing the CR relation between the participants in the entry table as well.

In short, RCC*-9 differs mostly from RCC-8 by accepting entities of different dimensions. It is
a boundary-tolerant theory, in contrast to RCC-8, and is based on two primitives, C & B. The
introduction of a new base relation, CR in RCC*-9 increases its expressiveness. Since RCC*-9 is
based on the OGC’s definitions of features (OGC, 2010), it may be considered more applicable in
the geographic domain than RCC-8. A summary of the differences is shown in Table 1.
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⊥

Figure 2: The lattice of RCC-8 topological relations from Randell and Cohn (1992). > denotes the
universal relation that applies to any pair of regions (i.e., true) and ⊥ denotes the empty relation
that never holds (i.e., is always false). Arrows denote a specialization, e.g., the arrow from EC to
DR shows that EC specializes DR, i.e. if EC(x, y) is true for arbitrary x and y then DR(x, y)
must also be true. The lattice consists of jointly exhaustive relation. For example, if DR(x, y)
holds for arbitrary x asn y, then either EC(x, y) or DC(x, y) is implied. The relations are pairwise
disjoint, for example, EC(x, y) and DC(x, y) cannot be true at the same time for a pair x and y.

Table 1: Comparison of RCC-8 and RCC*-9

aaaaaaaaaa
Properties

Theory
RCC-8 RCC*-9

Entities
Homogeneous regions Heterogeneous regions
Regular closed Regular closed

Boundary Without With
Primitive relation(s) 1 2
Number of base relations 8 9
Boolean operators Yes No
Composition table Available(8*8) Available(9*9)
Application All physical processes Geographical domain

3 RCC*-9 under surveillance

When we study RCC*-9 in more detail, its lattice of relations (Figure 4) gives rise to some logical
statements that must be true in the logical axiomatization of RCC*-9, in order for the lattice
to be correct. These statements can be divided into two types: specialization and subsumption.
Specialization is captured by rule I, while rule II captures subsumption.

I ) Where there is an edge between two relations in a lattice, some source relation S (lower in
the lattice) implies the target relation T (further up in the lattice):

S(x, y)→ T(x, y)
For example, CR(x, y)→ C(x, y).
When one relation points to (i.e. specializes) more than a single relation (e.g., EC specializes
C and DR), then the specialized relation implies all of the relations it points to. For example,
EC(x, y)→ DR(x, y) ∧C(x, y).
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1. DC(x, y) ≡def ¬C(x, y) (x disconnected from y)
P(x, y) ≡def ∀z[C(z, x)→ C(z, y)] (x is part of y)
PP(x, y) ≡def P(x, y) ∧ ¬P(y, x) (x is proper part of y)

2. EQ(x, y) ≡def P(x, y) ∧P(y, x) (x equals to y)
3. NTPP(x, y) ≡def PP(x, y) ∧ ∀z[B(z, y)→ DC(x, z)] (x is non-tangential proper part

of y)
4. TPP(x, y) ≡def PP(x, y) ∧ ¬NTPP(x, y) (x is tangential proper part of y)

O(x, y) ≡def ∃z[NTPP(z, x) ∧NTPP(z, y)] ∧ ∃t[TPP(t, x) ∧TPP(t, y)] (x overlaps
y)

5. PO(x, y) ≡def O(x, y) ∧ ¬P(x, y) ∧ ¬P(y, x) (x partially overlaps y)
6. EC(x, y) ≡def C(x, y)∧¬O(x, y)∧ ∀z[[P(z, x)∧P(z, y)]→ TPP(z, x)∨TPP(z, y)](x

externally connected to y)
DR(x, y) ≡def EC(x, x) ∨DC(x, y) (x is discrete from y)

7. CR(x, y) ≡def C(x, y) ∧ ¬O(x, y) ∧ ¬EC(x, y) (x crosses y)
Pi(x, y) ≡def P(y, x) (y has part x )
PPi(x, y) ≡def PP(y, x) (y has proper part x )

8. TPPi(x, y) ≡def TPP(y, x) (y has tangential proper part x )
9. NTPPi(x, y) ≡def NTPP(y, x) (y has non-tangential proper part x )

Figure 3: Defined relations in the RCC*-9 from Clementini and Cohn (2014).

II ) Where two (or more) relations S1 to Sn specialize a single relation T (e.g. CR, O and EC
all specialize C), then the disjunction of the specialized relations is equivalent to the target
relation:

T(x, y)↔ S1(x, y) ∨ · · · ∨ Sn(x, y)

Also, the nine base relations, Ri, of RCC*-9 (Ri i : 1, 2, ..., 9) must satisfy the following two
properties as well:

III ) ¬Ri1(x, y) ∨ ¬Ri2(x, y) (pairwise disjoint),

IV ) R1(x, y) ∨R2(x, y)∨ ...∨R9(x, y) (jointly exhaustive).

To verify the lattice of RCC*-9, we applied and checked these rules (I - IV) over the relations.
However, we identified some problems. According to the above mentioned properties in the lattice
of RCC*-9, the overlap relation is a generalized form of the PO, P and Pi relations, so according

>

C DR

O

P P−1

PP PP−1

TPP−1 NTPP−1TPP NTPP EQPOCR EC DC

⊥

Figure 4: The lattice of the RCC*-9’s spatial relations from Clementini and Cohn (2014).
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to rule II, we have:
O(x, y)↔ PO(x, y) ∨P(x, y) ∨Pi(x, y) (A)

This predicate means that not only must the overlap relation (O(x,y)) imply its specialized relations,
the specialized relations must also imply the overlap relations. In other words, the overlap relation
must cover all of thee subsumed relations directly (P,Pi and PO) and indirectly (PP,PPi ,NTPP,
NTPPi, TPP and TPPi).

On the other hand, the definition of the O(x,y) from Figure 3 says:
∃z[NTPP(z, x) ∧NTPP(z, y)] ∧ ∃t[TPP(t, x) ∧TPP(t, y)]

By considering (A), we expect that O(x,y) is entailed by P(x,y):
P(x, y)→ O(x, y) (B)

Since we fail in showing that the union of a set of all axioms and defined relations (Γ), and the
negation of (B) is not satisfiable, there must be a model for it. The finite model finder, Mace4
(McCune, 2006), searches for finite models of it. For a given size two domain ({0,1}), all instances
of the union over this domain are generated (see Table 2). As you can see, while there is a model for
P(x,y) (i.e.,“1”s in P: table), there is not any model for O(x,y) (i.e., “0”s in O: table). Alternatively,
the model is a counter-model for Γ∪(P(x, y)→ O(x, y)), and so P(x,y) does not entail O(x,y).

Table 2: Model provided by Mace4 for Γ ∪ ¬(P(x, y)→ O(x, y)).

B: 0 1

0 0 0
1 0 0

C: 0 1

0 1 1
1 1 1

DC: 0 1

0 0 0
1 0 0

NTPP: 0 1

0 1 1
1 1 1

O: 0 1

0 0 0
1 0 0

P: 0 1

0 1 1
1 1 1

PP: 0 1

0 1 1
1 1 1

TPP: 0 1

0 0 0
1 0 0

The source of this unexpected behavior seems to be the definition of O(x,y). Its truth depends on
the existence of an object (t) that is the tangential proper part of x and y at the same time. Such
a t must be found in ‘all’ the specialized relations of O. However, if x is a non-tangential proper
part of y, there is no such t (see Figure 5). So, RCC*-9 has defined a different notion of overlap
than RCC-8. RCC*-9’s overlap relation actually captures the partially overlap relation (see Figure

Figure 5: NTPP relation in RCC*-9

Figure 6: PO relation in RCC*-9
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6) rather than overlap. In order to reflect this, we rename O(x,y) to partially overlap relation with
prime, PO′ (all the relations in our new theory use ′ [prime] to distinguish them from the original
versions):

PO′(x, y) ≡def ∃z[NTPP(z, x) ∧NTPP(z, y)]∧
∃t[TPP(t, x) ∧TPP(t, y)]

and we redefine the overlap relation, O′(x, y), as follows:
O′(x, y) ≡def PO′(x, y) ∨P(x, y) ∨Pi(x, y)

Thus O(x,y) is replaced by O′(x,y) in all the relations and theorems, so the definitions of EC′(x,y)
and CR′(x,y) relations are modified consequently:

EC′(x, y) ≡def C(x, y) ∧ ¬O′(x, y) ∧ ∀z[[P(z, x)∧
P(z, y)]→ TPP(z, x) ∨TPP(z, y)]

CR′(x, y) ≡def C(x, y) ∧ ¬O′(x, y) ∧ ¬EC′(x, y)

We name this modified version of the theory RCC*′-9. The next step is to check the rules of the
lattice over this modified set of relations. To do it, we check rules I and II on all of the relations.
These rules construct a set of theorems that are listed and proved in Appendix A.

Moreover, the problem in the definition of overlap that has previously been mentioned has the
result that overlap does not satisfy rule III over its subset relations. For instance, ¬PO(x, y) ∨
¬TPP(x, y) is not provable, since partially overlap and proper part relations (by their definitions)
do not represent completely distinguished spatial arrangements. Since the relations must have
the JEPD property in order to support reasoning, we must also confirm that the modified set of
relations are also JEPD. We achieve this by proving all the theorems shown in Appendix B, which
are generated by applying rules III and IV.

Further clarification of the theory is also necessary to provide a clear description of the topological
domain. To achieve this goal, more theorems are needed to put more restrictions on the RCC′*-9
relations, and these are contained in Appendix C (all references beginning with Ext.T in Table 3 and
the following paragraphs refer to Appendix C). Specifically, the axioms of the theory imply some
properties for relations as can be seen in Table 3. Here, the identity of two features is a special case
of their equality (Ext.T.9), consequently two non-identical entities are not equal (Ext.T.10). Also,
we conclude that a boundary part of a feature is its tangential proper part as well (Ext.T.29).

Table 3: Properties of the relations in the RCC*′-9 and their relevant theorems in Appendix C

Relation Properies
DC(x,y) Irreflexive (Ext.T.1), Symmetric (Ext.T.2)
P(x,y) Reflexive (Ext.T.3), Anti-symmetric (Ext.T.4), Transitive (Ext.T.5).
EQ(x,y) Reflexive (Ext.T.6), Symmetric (Ext.T.7), Transitive (Ext.T.8)
PP(x,y) Irreflexive (Ext.T.11), Asymmetric (Ext.T.12), Transitive (Ext.T.13)
O′(x,y) Reflexive (Ext.T.14), Symmetric (Ext.T.15)
DR(x,y) Irreflexive (Ext.T.16), Symmetric (Ext.T.17)
PO′(x,y) Irreflexive (Ext.T.18), Symmetric (Ext.T.19)
EC′(x,y) Irreflexive (Ext.T.20), Symmetric (Ext.T.21)
TPP(x,y) Irreflexive (Ext.T.22), Asymmetric (Ext.T.23)
NTPP(x,y) Irreflexive (Ext.T.24), Asymmetric (Ext.T.25), Transitive (Ext.T.26)
CR′(x,y) Irreflexive (Ext.T.27), Symmetric (Ext.T.28)

Theorems (Ext.T.30) and (Ext.T.31) show the relationship between the RCC*′-9 and the classical
mereotopological calculus (Leonard and Goodman, 1940). With the absence of the cross relation
in the set of supported relations, RCC*′-9 collapses to RCC-8. Finally, the theorem (Ext.T.32)
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says that a non-tangential proper part of a region is part of its interior, so the connection of a
feature with any interior part of another feature implies either overlap or cross. Any part of the
non-tangential proper part of a region is its non tangential proper part (Ext.T.33). If an entity
is both part of a second entity and connected to a third entity, the two other (second and third)
entities are connected (Ext.T.34).

4 Logical verification

To check the correctness of RCC*′-9, we exploit consistency checking, which is a standard technique
in first order logic. It confirms that the formalism does not entail any contradiction after instan-
tiating all the axioms and a set of provable theorems (< F >) over the domain. Mathematically,
there must be no formula (φ) such that φ and ¬φ are a member of < F > simultaneously.

This technique involves generating some finite models via a finite model finder. This technique is
implemented in the Macleod suit of tools 5 that was previoulsy used to check the consistency of
RCC-8 and some other theories with the help of the finite model finder Mace4. We used the same
approach to prove the consistency of RCC*′-9.

5 Conclusion and further work

Since spatial features may be point, linear or areal features in GIS, having a qualitative theory
that can support querying over multidimensional data is crucial. RCC*-9 aims to meet this goal.
However, we demonstrate that the O relation in RCC*-9 does not capture the intended spatial
configuration. The main contribution of this paper is the introduction of RCC*′-9 as a modification
of RCC*-9 that resolves the identified problem. We prove the JEPD properties of the relations
and theorems relevant to the lattice of relations in RCC*′-9 and we evaluate the consistency of the
theory by finding finite models via Mace4.

Further research is needed to check whether the composition table of RCC*′-9 remains unchanged
and also provide a formal proof of its correctness. In addition, verifying the theory with some
sample data sets would be a further useful verification technique to further ensure the consistency
and appropriateness of the model in real world scenarios.
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Table 4: Composition table of relations in RCC*-9
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Appendices

A Theorems of lattice of relations in RCC*′9

A diagrammatic representation of the lattice is contained in (Figure.4) 6. Here we provide a set of
proved theorems. All these theorems are provable by using the refutation technique on the CNFs
of the formulas.

B Theorems of JEPD property of the RCC*′9

Below are assembled together a set of theorems that define the JEPD property of the RCC*′-9’s
relations. All these theorems are provable by using the refutation technique on the CNFs of the
formulas.

(T.24) ∀x∀y¬CR′(x, y) ∨ ¬DC(x, y)
(T.25) ∀x∀y¬CR′(x, y) ∨ ¬EC ′(x, y)
(T.26) ∀x∀y¬CR′(x, y) ∨ ¬NTPPi(x, y)
(T.27) ∀x∀y¬CR(x, y) ∨ ¬TPPi(x, y)
(T.28) ∀x∀y¬CR′(x, y) ∨ ¬EQ(x, y)
(T.29) ∀x∀y¬CR′(x, y) ∨ ¬NTPP (x, y)
(T.30) ∀x∀y¬CR(x, y) ∨ ¬TPP (x, y)

6These theorems are for RCC*′-9
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(T.31) ∀x∀y¬CR(x, y) ∨ ¬PO(x, y)
(T.32) ∀x∀y¬PO(x, y) ∨ ¬DC(x, y)
(T.33) ∀x∀y¬PO(x, y) ∨ ¬EC(x, y)
(T.34) ∀x∀y¬PO(x, y) ∨ ¬NTPPi(x, y)
(T.35) ∀x∀y¬PO(x, y) ∨ ¬TPPi(x, y)
(T.36) ∀x∀y¬PO(x, y) ∨ ¬EQ(x, y)
(T.37) ∀x∀y¬PO(x, y) ∨ ¬NTPP (x, y)
(T.38) ∀x∀y¬PO(x, y) ∨ ¬TPP (x, y)
(T.39) ∀x∀y¬TPP (x, y) ∨ ¬DC(x, y)
(T.40) ∀x∀y¬TPP (x, y) ∨ ¬EC(x, y)
(T.41) ∀x∀y¬TPP (x, y) ∨ ¬NTPPi(x, y)
(T.42) ∀x∀y¬TPP (x, y) ∨ ¬TPPi(x, y)
(T.43) ∀x∀y¬TPP (x, y) ∨ ¬EQ(x, y)
(T.44) ∀x∀y¬TPP (x, y) ∨ ¬NTPP (x, y)
(T.45) ∀x∀y¬NTPP (x, y) ∨ ¬DC(x, y)
(T.46) ∀x∀y¬NTPP (x, y) ∨ ¬EC(x, y)
(T.47) ∀x∀y¬NTPP (x, y) ∨ ¬NTPPi(x, y)
(T.48) ∀x∀y¬NTPP (x, y) ∨ ¬TPPi(x, y)
(T.49) ∀x∀y¬NTPP (x, y) ∨ ¬EQ(x, y)
(T.50) ∀x∀y¬EQ(x, y) ∨ ¬TPPi(x, y)
(T.51) ∀x∀y¬EQ(x, y) ∨ ¬NTPPi(x, y)
(T.52) ∀x∀y¬EQ(x, y) ∨ ¬EC(x, y)
(T.53) ∀x∀y¬EQ(x, y) ∨ ¬DC(x, y)
(T.54) ∀x∀y¬TPPi(x, y) ∨ ¬NTPPi(x, y)
(T.55) ∀x∀y¬TPPi(x, y) ∨ ¬EC(x, y)
(T.56) ∀x∀y¬TPPi(x, y) ∨ ¬DC(x, y)
(T.57) ∀x∀y¬EC ′(x, y) ∨ ¬DC(x, y)
(T.58) ∀x∀y¬EC ′(x, y) ∨ ¬NTPPi(x, y)

(T.59) ∀x∀yCR′(x, y) ∨ PO′(x, y) ∨NTPP (x, y) ∨ TPP (x, y) ∨ EQ(x, y) ∨ TPP−1(x, y) ∨NTPP−1(x, y)

∨ EC ′(x, y) ∨DC(x, y)

C Other necessary theorems

Below are the set of theorems that are necessary to support the defined spatial relations in RCC*′-9.

(Ext.T.12) ∀x∀yPP (x, y)→ ¬PP (y, x) (From definition of PP )
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