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Abstract

Geocomputation and spatial analytics have a shared history, and often times the distinction
between the two areas is less than clear. While both occupy a place under the banner of
GIScience, the emergence of spatial data science as a more broadly consuming grouping
perhaps makes any distinctions less significant. Irrespective of the overarching label or
naming preference, there are lessons to be learned about specification, representation,
implementation and interpretation, all of which have implications for openness. This paper
provides a comparative overview, delving into the nuances of geocomputation and spatial
analytics. This is done to make a number of points associated with recent trends in open
spatial data science.
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1. Introduction

The evolution of geographic information system (GIS) capabilities, data capture mechanisms and
readily available / accessible digital information has been remarkable. As a result, the needs for various
sorts of analysis has grown incredibly. This no doubt helps to explain the emergence of specialty areas
like geocomputation and spatial analytics. Geocomputation is often defined as computational
methods capable of accounting for special characteristics of spatial data through the use of artificial
intelligence (and machine learning) approaches, such as genetic algorithms, neural networks, cellular
automata, agent-based modelling, etc. A pioneering force was Stan Openshaw, and the modelling
context of geocomputation extended to most forms of geographical analysis, like optimization,
statistics and clustering (Gahegan 1999, Harris et al. 2017, Thill and Dragicevic 2018). Dominating
much of geocomputation is what can be referred to as heuristic techniques, where simulation and
other ad hoc procedures are employed to mimic and replicate processes as well as project the future
and prescribe remedies. The work of Clarke et al. (1997) and Waddell (2002), and others along these
lines, come to mind as very representative of developments in this area, where artificial intelligence
(or machine learning, simulation, etc.) oriented approaches rely on a learning mechanisms to establish
rules by which change occurs. The rules are then analysed in various ways and/or used to derive a
solution of some sort.

One of my first Geocomputation conference contributions was in 1999 (Virginia, USA) involving the
use of one such artificial intelligence approach, cellular automata, subsequently published as Ward et
al. (2000). My involvement in other geocomputational efforts has continued over the years, including
Ward et al. (2003), Murray et al. (2008), Kim et al. (2008), Tong et al. (2009), Wei and Murray (2014)
and Hong et al. (2017). Drawing on Murray (2010, 2017), Murray (2019) suggests that spatial analytics
include all quantitative methods that support analysis, policy and planning involving geographic space.
My view is that geocomputation has historically been more narrowly defined in terms of associated



methods, but the semantics are of secondary importance here. What | would note is that, as suggested
in Thill and Dragicevic (2018), GIS has made significant headway in providing access to spatial analytics
and geocomputation. This becomes increasing relevant in a number of ways. In what follows | review
a number of insights associated with specification, representation, implementation and
interpretation, all relevant in the context of openness.

2. Specification

Method specification can be challenging in many ways. Since my primary area of specialization is
spatial optimization, a field falling under both spatial analytics and geocomputation, | will make a
number of preliminary points before more broad generalisations. A discussion of spatial
optimization can be found in Tong and Murray (2012). Consider the following definition:

Spatial optimization - structuring and solving a problem involving decisions to be made that must
conform to various restrictions imposed, where decisions, coefficients, relationships and constraints
may be spatial and/or aspatial in nature.

This is a reasonably broad, but vague, description. Contrast this with the following:
Minimize fX) (1)
Subject to gi(X) =b; Vi (2)

where X is a vector of decision variables, x;, f( ) a function relating inputs, g;( ) is the it
function relating inputs, and b; a coefficient associated with each constraint i. The objective of this
optimization model, (1), seeks to minimize the function of decision variables. The constraints, (2),
impose restrictions on decision variables through functions g;( ) in relation to its right hand side
value b;. The spatial nature of the problem would arise through some combination of decision
variables (e.g., X), coefficients, functions that are geographically specific (e.g., f( ) and g;( )),
and/or spatial structure that is imposed by constraints, (2). Further, we will assume that some
approach exists for solving this model.

The point to be made is that spatial optimization becomes more explicit through the formulation,
(1)-(2), in contrast to the written description given above. Increased specificity beyond this is
certainly possible as well. Consider the following:

Minimize X Cixj (3)
Subject to 2jaijxj = b; Vi (4)
x; ={0,1} vj (5)

where ¢; is a coefficient associated with each decision variable in (3), the objective, a;; is a
coefficient associated with each decision variable j and i" constraint (4), and all other notation as
previously defined. Binary conditions on decision variables have been amended to the model in (5).
This formulation of a spatial optimization problem is now much more specific, though for
generalization ¢;, a;j and b; have been used to denote coefficients rather than actual observed

numerical values. However, in order to solve this model these a priori defined and known values



would be necessary to specify the application. Further, under certain conditions it is likely that
optimization software, commercial or open source, may be able to able to solve an associated
problem instance given the linear functions involved.

From a specification perspective, an issue with spatial analytical or geocomputational approaches is
whether the problem/model has been rigorously and/or sufficiently formalized. A mathematical
model is essentially the gold standard because of the specificity and communication involved. The
assumptions, relationships, etc. are explicit in the mathematical statements used to express the
model/problem. An observation regarding geocomputational methods is that most can be
characterized as vague in some manner, lacking explicit mathematical specification. For example,
Clarke et al. (1997) summarized their cellular automaton model using the following pseudo code:

Read data layers
Initialize random numbers & control parameters
For n iterations {
For t time periods {
Apply change rules
Apply self modification rules
Compute and save descriptive statistics
}
}

Write images

Waddell (2002) used a table to compare operational model characteristics of the developed
simulation approach, UrbanSim, to other urban models. In addition, a figure to depict data
integration as well as a figure to diagram model structure and processing are provided. This more or
less represents the “model”. Both Clarke et al. (1997) and Waddell (2002) typify a number of
geocomputation approaches in that there is considerable ambiguity in many aspects of what the
model is doing. Questions that come to mind are the many. What are the planning or management
units? What are the options for change and/or modification (the decisions)? What spatial
relationships are considered? What are the transition probability functions and/or rules? Many
other questions could be added to this list.

Interestingly, vague details are also offered for many spatial analytical heuristics as well as methods
provided in GIS packages, such as ArcGIS and TransCAD. Murray (2018a) and Murray et al. (2019)
report that a host of spatial optimization models are available in these packages, yet descriptions
available in the software or through online help are not mathematical, employ differing/inconsistent
naming conventions, and generally do not reference any associated literature.

The important message here is that a lack of specificity for any quantitative method is highly
problematic in a number of ways. A fundamental issue is that vagueness leads to uncertainty. When
this happens, replication, verification, openness, etc. is not possible. Beyond this, it is unclear exactly
what a user is doing, which therefore limits capabilities to defend what is being done. So, non-
explicit approaches are not necessary wrong or incorrect, but rather create uncertainties that could
impact the utility of a method / model.



3. Representation

A particularly acute issue in spatial analytics and geocomputation is the significance of the
geographic representation of a region under study. Openshaw and Taylor (1981) refer to the
modifiable areal unit problem (MAUP), suggesting that the results of a particular quantitative
method may be the byproduct of spatial unit definition and/or geographic scale of analysis. That is,
depending on the method used, the finding obtained may be biased or impacted by the
representation of a geographic area. An interesting take on this is offered in Tobler (1989), indicating
that the issue may well be attributable to the method utilized, not geographic representation per se.
Specifically, if the method is sensitive to geographic representation, then it is frame dependent. The
implication is that a frame dependent method, according to Tobler (1989), is the wrong method in
terms of structure and/or conceptualization. Tobler (1989) suggested that researchers seek out and
develop frame independent methods, where an analytical approach would produce consistent
results irrespective of spatial representation.

Regardless of whether you prefer the MAUP perspective or frame dependence characterization,
what is clear is that a range of spatial analytic and geocomputational approaches are indeed
sensitive to spatial representation. There has in fact been much research highlighting this issue as
well as development of methods that are less susceptible or free from MAUP issues. Murray (2018b)
discusses work in spatial optimization, where a coverage location problem is considered. It was
demonstrated that through the use of GIS, theoretical properties could be established for
eliminating MAUP, with a strategy devised to guarantee an optimal solution. That is, Murray (2018b)
shows that the considered coverage problem can be structured and solved using a frame
independent approach.

Representation is an important concern for spatial analytic and geocomputational methods. One
issue that comes to mind is how can representation impacts be assessed in a more formalized
manner? To date, approaches for evaluating MAUP, if any, have been ad hoc in spatial analytics and
geocomputation. While most quantitative methods are believed to be impacted by MAUP,
evaluation and assessment in a given application context is necessary. A second issue is, assuming
that MAUP or frame dependence is detected, how to address representation impacts? The advice
now is simply to use the finest spatial resolution possible, reflecting that this is essentially the best
that can be done in many circumstances. Of course, this is not particularly scientific nor does it
address the more overarching and pressing issues of methodological rigor associated with spatial
representation.

4. Implementation

The implementation or solution of models in spatial analytics and geocomputation is often unclear,
ambiguous or vague. Spatial optimization, as an example, is highly dependent on model
specification, formally or informally. The above mathematical models are a formal means of
specification. Of course, spatial optimization is also about model or problem implementation, or
solution. The entire point of model specification is that it is a precursor to solution. Solving a spatial
optimization may be accomplished in two ways, exactly or heuristically. Murray (2010) and Tong and
Murray (2012), among others, provide discussion on problem solution. An exact method is one
capable of identifying an optimal solution, where it is guaranteed to be the best and can be proven
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as such. There is no better solution that can be identified using any other imaginable approach. On
the other hand, a heuristic method is one comprised of rules or ad hoc procedures for solving a
problem. The identified solution may be good, feasible, useful, etc., but there is no guarantee that it
is optimal. Heuristics are often relied upon because they are computationally efficient, are easy to
understand and/or implement, find good solutions, offer fast solution times, are not dependent on
proprietary software, etc. There are indeed appealing reasons for employing a heuristic to solve a
problem. Nevertheless, a heuristic cannot guarantee that an optimal solution is found.

In terms of implementation (or solution), spatial analytics and geocomputational approaches are
regularly solved using software and libraries lacking clarity in what has been done or the methods
used. That is, it is not always evident whether the solution approach is exact or heuristic. Exact
methods are preferable for solving any model because one can rely on associated optimality
properties. Of course, this may not always be possible as the model may not be amenable to exact
solution, it may be too difficult to solve, solution may require an excessive amount of time,
proprietary software is too expensive, etc. These are points made in Murray (2018b) and Murray et
al. (2019). The implementation issue clearly centers on what has been done, whether an exact or
heuristic approach has been used, the parameters utilized, assumed conditions, etc. The reason is
that all of these issues may impact solution quality but also have implications for significance. For
example, if heuristic results are obtained, it may be prudent to establish confidence bounds on
findings in some manner. Murray et al. (2019) note that a final solution for a spatial optimization
model in GIS, as an example, is simply passed along to the user with no mention of certainty, yet
often the solution is often found using a heuristic technique. Additionally, many of these heuristics
do not allow for parameter adjustment or control, further hindering evaluation of solution quality.

5. Interpretation

Cognitive skills are something that varies considerably among individuals. It should not therefore be
surprising that individual ability to interpret spatial analytic and geocomputation results would vary
as well. Clearly this is challenging give the complexities of specification, representation and
implementation already noted, but there is even more to it than this. Irrespective of whether one
implements an exact or heuristic approach in code or relies on GIS or other software, the fact
remains that user skill levels vary. People may or may not have formal training in a particular area,
such as spatial statistics, clustering, spatial optimization, etc. This will no doubt impact their ability to
interpret findings. This does not necessary mean they will or will not utilize a method or set of
methods. What is true is that point-and-click access makes it easy for even the most novice of users.
Indeed, this is by design. Point-and-click is a software system that is user friendly where the
computer mouse / touch pad can be used to point to a function and click on it (or through the use of
menu pull downs) thereby launching the method, likely providing an easy to navigate interface of
the model / method. Most GIS packages are accessible in this manner, but also a range of software
that supports spatial analytics. Again, the ability to point-and-click does not necessarily translate to
being capable of interpreting the results in a valid, meaningful and significant manner. Finally,
gaining problem insights is often essential in spatial analytics. The goal is to seek out implications,
where this can then enable planning, management and policy decision making. This is the essence of
interpretation.



Spatial analytics and geocomputational approaches face significant challenges in the area of
facilitating interpretation. As noted above, a major difficulty is differing technical skills and training
in advanced spatial analytical methods. Beyond this, there are a range of issues worthy of serious
consideration. For example, how does one interpret model findings / results in the context of
parameters and assumptions, geographic and model based abstraction, data quality and uncertainty,
etc. Additionally, there are indeed issues associated with specification and implementation, such as
interpreting significance for non-optimal results. Does it providing meaningful insights? Can the
results be used to draw a valid inference? Are the implications generalizable? There are no doubt
others as well. An interesting issue involving geographic context is that spatial analytics and
geocomputation often produce results involving spatial configuration. How does one interpret
spatial configuration when models have alterative optima? That is, many spatial optimization models
are known to have multiple alternative optima, meaning that spatial configuration can be very
different between alternative solutions yet all would be optimal (equivalent objective value). Of
course, if a heuristic is used then there may be close to optimal spatial configurations as well. Finally,
in the case of a multi-objective model, there are possibly many non-dominated solutions (Pareto
optima), all of which represent optimal solutions for given user preferences associated with trade-
offs. Interpretation in each of the above cases is difficult at best.

6. Discussion and Conclusions

The intent of the paper has been to raise specification, representation, implementation and
interpretation issues in spatial analytics and geocomputation. An obvious challenge remains for
improved communication. However, it is clear that further research is necessary on ways to compare,
assess, summarize, visualize, etc. in the context of various types of uncertainty. To be sure, uncertainty
arises due to specification, representation, implementation and/or interpretation facets encountered.
Figure 1 depicts a solution to a spatial optimization problem, the LSCP, obtained using ArcGIS
(“Minimize_Facilities” option). This particular application is detailed in Murray et al. (2019), and
involves siting California Redemption Value centres. The solution identified in Figure 1 indicates that
42 service centres are required. However, given the coverage standard of 0.5 miles, it is actually
possible to serve all indicated demand (supermarkets) with only 41 centres. The spatial configuration
is different, but more importantly 42 centres is more costly than 41. There are fixed costs as well as
recurring annual costs associated with personnel, transportation, etc. Non-optimality due to the use
of a heuristic (implementation) in this case is actually a major issue, likely to translate to millions of
dollars in unnecessary expenditures. How can users, agencies, decision making bodies exercise
fiduciary responsibility without better knowledge?
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Figure 1: Heuristic solution for a location coverage problem.

With recent trends moving toward open geospatial science, reproducibility and replicability, the
results reflected in Figure 1 raise significant concerns. Because of uncertainty associated with methods
(specification), the results do not reflect openness. As the solution is identified using a heuristic
process, it may in fact not be reproducible nor replicable, per se.

Open geospatial science no doubt has an important role in the future of geocomputation (and spatial
analytics). It reflects notions that all are welcome to contribute along with transparency, replicability
and reproducibility, among others, in areas where spatio-temporal detail is inherently meaningful (Sui
2014, Rey 2018). Open geospatial science, or perhaps open spatial data science, is the culmination of
decades of efforts to make programming, analysis, modelling, planning, etc. better in a variety of ways.
One aspect of this is not reinventing the wheel for each and every project. Data, code, models,
algorithms, programs, software, etc. should have some general utility beyond its original specific
purpose. Reuse is a good rationale but there is also elimination of error, where reproduction always
has the potential to introduce bugs, assuming something was done correctly to begin with. Either way
we are talking about a savings of time and effort in carrying out implementation or conducting
analysis. Nevertheless, open science also has to do with communication as well as expectations of
replicability and reproducibility.

Specification, representation, implementation and interpretation concerns have been raised
associated with spatial analytical and geocomputation methods. Perhaps the biggest contrast
between spatial analytics and geocompuation is the tendency to rely more on heuristic approaches in
geocomputation, but there are clearly many instances of where this is also true in spatial analytics. Of
more significance is that improved capabilities to communicate quality and uncertainty is more critical
than ever. Research is needed along the lines outlined given recent trends and the growing
significance of spatial data science.
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