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Abstract

We build on the recent literature on the use of parcel data in areal interpolation of population by
incorporating high resolution building outline data. Our results show that models that constrain
the operating footprint of the areal interpolation not just to parcel boundaries but the outlines
of the buildings themselves have the potential to further reduce the areal interpolation error
beyond what has already been demonstrated in previous literature. We also demonstrate that
these principles apply not just to residential populations but to worker populations as well.
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1 Introduction

Census data typically tabulate residents at an aggregate level within some set of enumeration areas,
and when the spatial precision of the available aggregations is too coarse for a particular need, it
is common for researchers to employ intelligent areal interpolation methods (often referred to as
“dasymetric” methods) in an attempt to spatially refine the mapped distribution of population.
Land cover and land use data, address points, street networks, and many other sources of informa-
tion have been used to better concentrate the mapped population in the land actually containing
homes.

When available, parcel datasets (i.e., property data, tax lots, cadastral data) can be a valuable source
of information about the segmentation and use of land within an enumeration area, and so have seen
some recent use in the areal interpolation literature. In some parcel datasets, the residential floor
area and/or the number of residential units is recorded for each parcel, which allows for very precise
disaggregation of residential census counts (Maantay et al., 2007). Even without these attributes,
Tapp (2010) showed that simply populating each residential parcel as if it contains a single average
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household results in a more accurate modeled distribution than dasymetric techniques using national
land cover data (though with the downside that the populations of multi-family housing in urban
areas tend to be underestimated). Jia et al. (2014) adapted dasymetric techniques based on empirical
sampling (Mennis, 2003) to parcel data in a county in Florida, demonstrating improvement over
land cover-based methods, and showed further improvements when using parcel data and land cover
in a combined model (Jia and Gaughan, 2016).

Here, we extend the use of parcel data in areal interpolation to a scenario in which both a national
(USA) parcel database and a national map of building outlines are available. The national parcel
database provides a common set of land use attributes across most of the contiguous United States
(CONUS), and the building outlines can potentially allow more precision in both the estimation of
densities as well as the final assignment of populations to small areas.

2 Data and methods

2.1 National parcel layer

Parcel polygons and their associated land uses were obtained from the CoreLogic ParcelPoint
database. There are 276 different land use classes represented by a three-digit number where the
first digit represents larger super-classes (for example, a first digit of 1 indicates a residential land
use). Many parcels, however, do not have an associated land use (this class is signified by “Null”)
and there are many patches of land that are not covered by parcels at all. We consolidated the land
uses to a simpler set of categories to use in the regression modeling described below. The specific
categories and the land uses assigned to each are defined in table 1.

2.2 National building layer

The building outline layer is a national layer representing building area, derived from NAIP (Na-
tional Agricultural Imagery Program) aerial images using a supervised convolutional neural network
classifier (Yang et al., 2018). The classifier produces a binary output at the resolution of the source
imagery (1 m), which we converted to polygons and stored in a PostgreSQL database extended with
PostGIS.

2.3 Regression modeling

A variety of options for using regression to estimate population densities from multiple land classes
have been demonstrated in the literature. An exhaustive assessment of the different approaches is
outside the scope of this paper, but see section 4 for a discussion of potential options to explore in
future work. In the current work, we use generalized linear models with a poisson data distribution,
an identity link function, and a zero intercept, following the work of Flowerdew and Green (1989).
After applying the model coefficients to estimate populations for every intersection of building and
parcel (which we refer to as building “pieces”), we also implement a standard scaling step to ensure
that the estimates for the pieces sum to the actual tract populations.

Census tracts serve as our observational units for both residential and worker populations, and
the corresponding source populations are derived from two surveys from the U.S. Census Bureau.
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Land use Description Res vs. Wrk Category

118 Frat/Sorority House res groups
119 Residence Hall/Dormitories res groups
155 Group Quarters res groups
156 Orphanage res groups
157 Nursing Home res groups
103 Apartment/Hotel res multi
106 Apartment res multi
111 Cooperative res multi
112 Condominium res multi
113 Condominium Project res multi
115 Duplex res multi
116 Mid Rise Condo res multi
117 High Rise Condo res multi
131 Multi Family 10 Units Plus res multi
132 Multi Family 10 Units Less res multi
133 Multi Family Dwelling res multi
134 Mixed Complex res multi
148 PUD res multi
151 Quadruplex res multi
165 Triplex res multi
245 Office & Residential res multi
281 Stores & Residential res multi
100 Residential (Nec) res single
102 Townhouse/Rowhouse res single
135 Mobile Home Lot res single
136 Mobile Home Park res single
137 Mobile Home res single
138 Manufactured Home res single
160 Rural Homesite res single
163 SFR (Single-Family Residential) res single
509 Ranch res single
511 Farms res single
2xx Commercial (65 three-digit codes) wrk com
6xx Public (35 three-digit codes) wrk pub
xxx Other (144 three-digit codes) wrk other

Table 1: Consolidation of land use codes from CoreLogic parcel data to model categories. All 276
land use codes are assigned to a category (res-single, res-multi, res-groups, wrk-com, wrk-public,
or wrk-other). “2xx” indicates all codes with a first digit of 2; “xxx” indicates “everything else”
(all codes not explicitly specified elsewhere in the table). This category contains recreational,
transportation, and agriculture uses, among others.
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Worker populations are obtained from the LEHD (Longitudinal Employer-Household Dynamics)
Origin-Destination Employment Statistics (LODES), while residential population estimates are ob-
tained from the American Community Survey (ACS) 5-year estimates. These populations are the
outcome variables in the regression models. The predictors are the areas (in m2) of the consolidated
land use classes. We fit the models only with census tracts having a non-zero population, having a
non-zero area for more than one of the three categories, and in which at least 90% of the building
area in the tract is within parcels with non-null land use values.

We performed a total of four regressions. First we fit a pair of regression models (one for residential
and one for workers) using all eligible tracts (those meeting the criteria defined above) across CONUS
and with predictors representing building area of the land use categories. (We will refer to these
models as res-bld and wrk-bld .) We then fit two additional models for the same set of CONUS
tracts, but using predictors representing land area of the land use categories rather than building
area. (We will refer to these models as res-land and wrk-land .) The latter two models are more
akin to the models demonstrated in previous studies, in which densities are estimated in terms of
land area rather than building area.

3 Results

The coefficients of the regressions can be interpreted as estimated population densities for each
of the consolidated classes (Table 2). It can be seen that for every category, the densities of the
res-land and wrk-land models are lower than the corresponding densities of the res-bld and wrk-
bld densities. This is as expected, because the res-land and wrk-land densities are in terms of
total parcel land area rather than the more concentrated building area in the res-bld and wrk-bld
models. But regardless of the difference in magnitude, it can also be seen that the relative order of
the categories from highest to lowest density is consistent between the two residential models and
between the two worker models (i.e., multi > groups > single, and com > public > other).

Model Category Density (people per square meter)

res-bld groups 0.04580401
multi 0.06268017
single 0.01518875

wrk-bld com 0.02825485
public 0.01185636
other 0.00305430

res-land groups 0.00741439
multi 0.01229686
single 0.00006058

wrk-land com 0.00150508
public 0.00000154
other 0.00000019

Table 2: Estimated population densities (poisson regression coefficients) for the three residential
and three worker categories from the four regression models.

Because our model used census tract populations as the source populations, it is possible to assess
the estimation error at the finer block group level (for which population data is available from both
the ACS and LODES sources). (It is important to note that both the ACS and LODES populations
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are estimates from surveys and so should not be considered “ground truth” in the same way full
decennial census counts would be.) At the block group level, we assess the estimates on a suite of
metrics proposed by Sridharan and Qiu (2013). Two well-known metrics, root mean square error
(RMSE) and mean absolute error (MAE), are shown in Table 3. Because these metrics are sensitive
to size (block groups with larger populations will tend to have larger errors), we also include four
standardized metrics (adjusted RMSE, mean absolute percentage error (MAPE), median absolute
percentage error (MedAPE), and population-weighted mean absolute error (PWMAE)), all of which
divide each error value by the observed value. The two building area-based models have lower error
values across all metrics than the corresponding land area-based models, which demonstrates the
value that high resolution building maps can bring to parcel-based areal interpolation.

Model RMSE MAE Adj. RMSE MAPE MedAPE PWMAE

res-bld 461.110 298.210 1.350 0.250 16.250 24.310
wrk-bld 641.520 201.320 8.310 1.200 37.900 104.660
res-land 998.580 683.930 2.320 0.540 39.110 64.230
wrk-land 791.600 272.680 11.290 1.550 54.190 198.740

Table 3: Error metrics for residential and worker model predictions at the block group level.

4 Conclusion and future directions

We have demonstrated some initial steps toward incorporating national parcel data and national
building data into an areal interpolation model for mapping population, and we have done so not
just for residential population but also for worker populations. We consider the work described
here to be merely a first proof of concept of using parcel data in combination with high resolution
building outline data. From here, a number of lines of inquiry may follow. We intend to work with
other modeling approaches beyond the global poisson regression approach described above. Espe-
cially interesting to consider will be approaches that do not estimate global coefficients, but allow
locally varying coefficients. Applications of quantile regression and geographically weighted regres-
sion to the areal interpolation problem have been demonstrated (Cromley et al., 2012, 2013; Lin
and Cromley, 2015) but have only been applied using coarse land cover data. Therefore, it would
be worthwhile to explore extending these approaches in the context of parcel-level land use and pre-
cise building outlines. Various geographical stratification approaches and/or multilevel/hierarchical
models could also be explored in this context. Our treatment of the parcel land uses deserves
some additional scrutiny as well. We chose in this analysis to consolidate the land uses rather
aggressively—down to just three populated categories for each model. This topic was explored by
Jia and Gaughan (2016), who demonstrated that overall error was reduced by consolidating the 25
property types in Alachua County, Florida down to 7 coarser classes. The optimal number of classes
will probably depend on the particular data context and modeling approach; ideally, this question
can be further explored in conjunction with explorations of different modeling approaches.

5 References

Cromley, R. G., D. M. Hanink, and G. C. Bentley
2012. A Quantile Regression Approach to Areal Interpolation. Annals of the Association of American
Geographers, 102(4):763–777.

5



Cromley, R. G., D. M. Hanink, and J. Lin
2013. Developing Choropleth Maps of Parameter Results for Quantile Regression. Cartographica:
The International Journal for Geographic Information and Geovisualization.

Flowerdew, R. and M. Green
1989. Statistical methods for inference between incompatible zonal systems. The accuracy of spatial
databases, Pp. 239–247.

Jia, P. and A. E. Gaughan
2016. Dasymetric modeling: A hybrid approach using land cover and tax parcel data for mapping
population in Alachua County, Florida. Applied Geography, 66:100–108.

Jia, P., Y. Qiu, and A. E. Gaughan
2014. A fine-scale spatial population distribution on the High-resolution Gridded Population Surface
and application in Alachua County, Florida. Applied Geography, 50:99–107.

Lin, J. and R. G. Cromley
2015. A local polycategorical approach to areal interpolation. Computers, environment and urban
systems, 54:23–31.

Maantay, J. A., A. R. Maroko, and C. Herrmann
2007. Mapping Population Distribution in the Urban Environment: The Cadastral-based Expert
Dasymetric System (CEDS). Cartography and Geographic Information Science, 34(2):77–102.

Mennis, J.
2003. Generating Surface Models of Population Using Dasymetric Mapping. The Professional
Geographer, 55(1):31–42.

Sridharan, H. and F. Qiu
2013. A Spatially Disaggregated Areal Interpolation Model Using Light Detection and Ranging-
Derived Building Volumes. Geographical Analysis, 45(3):238–258.

Tapp, A. F.
2010. Areal Interpolation and Dasymetric Mapping Methods Using Local Ancillary Data Sources.
Cartography and Geographic Information Science, 37(3):215–228.

Yang, H. L., J. Yuan, D. Lunga, M. Laverdiere, A. Rose, and B. Bhaduri
2018. Building Extraction at Scale Using Convolutional Neural Network: Mapping of the United
States. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,
11(8):2600–2614.

6


	Introduction
	Data and methods
	National parcel layer
	National building layer
	Regression modeling

	Results
	Conclusion and future directions
	References

