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Abstract 

Interpolation techniques provide a method to convert point sampling data into a continuous 

estimate of a field phenomenon and have become a fundamental geocomputational 

technique of spatial and geographical analysts.  Natural neighbour interpolation is one 

method of interpolation that has several useful properties: it is an exact interpolator, it 

creates a smooth surface free of any discontinuities, it is a local method, and is spatially 

adaptive.  However, as with any interpolation method, there will be uncertainty in how well 

the interpolated field values reflect actual phenomenon values.  Using a method based on 

distance error rates calculated for data points via leave-one-out cross-validation, reasonable 

estimates of interpolation error can be made, at least within the convex hull of the data 

points.  While this method does not replace the need for analysts to use sound judgement 

in their interpolations, it does provide a valuable tool to aid in assessing the uncertainty 

associated with those interpolations. 
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1. Introduction 

Natural neighbour interpolation is an interpolation technique that was first presented by Sibson (1981).  

Previous authors (Sambridge et al., 1995; Watson, 1999) have noted several useful properties of natural 

neighbour interpolation: (i) the method is an exact interpolator, in that the original data values are 

retained at the reference data points; (ii) the method creates a smooth surface free of any discontinuities; 

(iii) the method is entirely local, as it is based on a minimal subset of data locations that excludes 

locations that while close are more distant than another location in a similar direction; and (iv) the 

method is spatially adaptive, automatically adapting to local variation in data density or spatial 

arrangement.  These properties make natural neighbour interpolation particularly well suited for the 

interpolation of continuous phenomena from reference data points that have a highly irregular spatial 

distribution.  However, there is a great deal of uncertainty associated with any interpolation, and 

therefore being able to associate predictions from natural neighbour interpolation with some form of 

uncertainty would be highly desirable.  I present an approach to estimate the likely error as a function 

of distance from natural neighbours and the known error rates at data points. 

2. Computing Uncertainty 

2.1. Method 

Given a smooth continuous field that is sampled at a series of locations (Figure 1a), natural neighbour 

interpolation can then estimate that field (Figure 1b).  The difference between the actual field and the 
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estimated field becomes the known error (Figure 1c) that we are interested in estimating.  The 

proposed method uses leave-one-out cross-validation to calculate the absolute error at each data point 

when the field value at that data point is estimated via natural neighbour interpolation.  This absolute 

error is then converted to a distance error rate by dividing the error by the distance to the natural 

neighbours.  Using localised error rates is highly advantageous as it allows for error estimates to 

reflect local changes in the field, with lower error rates in smoother areas and higher error rates in 

rougher areas.  This contrasts with other spatial interpolation uncertainty methods such as kriging 

which estimate uncertainty of interpolation using a global variogram model fitted to all the data 

simultaneously.  An estimate of the absolute error for the interpolation is then made by using natural 

neighbour interpolation for a second time to interpolate the distance error rate for each data point, and 

then using map algebra to multiply the interpolated distance error rate field by a distance to data 

points field (Figure 1d).  The difference between the known and estimated absolute error represents 

how well the proposed method performs (Figure 1e). 

 

 

Figure 1: The natural neighbour interpolation uncertainty computational process. (a) A randomly 

generated field with random sampling points, and (b) the resulting natural neighbour interpolation 

from the sampling points.  The (c) known absolute error between the random field and the 

interpolated field, and (d) the estimated absolute error.  (e) The error difference between the known 

and estimated absolute errors, showing areas of error underprediction and overprediction. 

 

2.2. Experiments 

To examine the performance of the proposed method a series of 15 computational experiments were 

run using a Python computational framework (Pérez et al., 2011).  Simulated random field phenomena 

for grids of 100 × 150 cells were created using the mid-point displacement method (Fournier et al., 

1982) implemented in the NLMpy package (Etherington et al., 2015).  The smoothness of the mid-

point displacement method can be controlled by varying the h parameter which was set at two for a 

smooth field.  Simulated data points were created by extracting the underlying value from ten points 

randomly located across the simulated spatial phenomena grids.  The proposed computational method 

(Figure 1) was applied to each of the 15 experiments to produce 15 error difference fields (Figure 2). 
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Figure 2: Error difference between the known and estimated absolute errors for 15 natural neighbour 

interpolation experimental replicates. 

 

3. Results and Discussion 

The results from the computational experiments (Figure 2) would indicate that at least for a smooth 

field sampled with 10 data points, a reasonable estimate of interpolation error can be made.  Within the 

convex hull encapsulating the data points, the estimated error was very close to or slightly above the 

known error.  Overestimates of error while not ideal still envelop the actual error and therefore are not 

considered as significant an issue as underestimates of error.  Large differences between the estimated 

and known error, and underestimates of error, were largely limited to areas outside the convex hull.  A 

reduction in performance of natural neighbour interpolation outside the convex hull is not unexpected 

as it has been noted before (Watson 1999), but this is also likely to be true of all spatial interpolation 

techniques as beyond the convex hull interpolation becomes extrapolation.  However, we do not suggest 

that interpolation should be restricted to within the convex hull as there may be occasions where the 

area of interest may occur slightly outside the convex hull.  For example, when interpolating rainfall 

data from weather stations that are usually sited in settlements, there are likely to be areas of coastline 

along peninsulas and headlands that will not fall within a convex hull around the weather stations.  

Therefore, it is logistically useful for an interpolation technique to be able to estimate values beyond 
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the convex hull of the available data points.  Therefore, while this technique for estimating interpolation 

error shows promise, the responsibility of appropriate use of natural neighbour interpolation still 

belongs with the spatial analyst who must make decisions about whether interpolation is useful based 

on their knowledge of: the smoothness of the phenomenon being interpolated, the number and 

distribution of data points, and the location of the areas for which interpolations are required. 
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