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Abstracts 

The objectives of this study are to develop geographically weighted (GW) non-negative principal 
components analysis (PCA) and to explore spatial variations of contributions to a multidimensional 
composite index (MCI) from spatial multidimensional data. As a case study, we produced a MCI for 
earthquake risk in Tokyo, Japan, in 2018 from the collapse risk of buildings, the fire risk, and the 
evacuation risk associated with earthquake. GW non-negative PCA was applied to these data to 
uncover spatial variation of non-negative weightings (eigenvectors). This study demonstrates GW 
non-negative PCA provides more informative outputs when considering local differences of 
contributions of multidimensional data to the composite index.  
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1. Introduction 

Principal components analysis (PCA) is a well-known dimension reduction technique used in 
multidimensional data. The PCA allows the extraction of several orthogonal principal components 
(eigenvectors) which consist of linear combinations of multidimensional data by accounting for the 
variance in a data set. The eigenvector with the largest variation of input data is allocated as the first 
eigenvector, providing a means to build a multidimensional composite index (MCI) in the case where 
the multidimensional data correlate with each other as a whole. Eigenvectors, which are coefficients 
or weights of the linear combination of the input data, would be feasibly interpretable if such 
eigenvectors are all positive, however eigenvectors calculated by conventional PCA can be negative. 
Constraints of non-negative eigenvectors are important to be additive, not subtractive, 
combinations of multidimensional data. To deal with this issue, non-negative PCA has been 
developed to coerce eigenvectors to be non-negative (Sigg and Buhmann 2008). Another issue with 
conventional PCA is that it does not incorporate spatial effects for the use of geospatial data. To 
incorporate spatial heterogeneity into the analysis (Demšar et al. 2013), geographically weighted 
(GW) PCA has been proposed and applied to geographical studies (Harris, Brunsdon, and Charlton 
2011; Lu et al. 2014; Gollini et al. 2015; Tsutsumida, Harris, and Comber 2017). GWPCA is locally 
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weighted PCAs in geographic space and is applied at each point at the centre of a distance-decayed 
moving window or kernel. The GWPCA eigenvectors can vary spatially, however again such 
eigenvectors can be negative, resulting in the difficulty of building a MCI straightforwardly. To 
address this, this study proposes GW non-negative PCA which combines non-negative PCA and 
GWPCA to make local eigenvectors non-negative at any locations with accounting for a spatial 
heterogeneity. We applied GW non-negative PCA to three risks of earthquake in Tokyo metropolitan 
areas, Japan, to build a MCI as a case study. 

2. Methods 

2.1. Data 

Our study data consist of 3138 administrative units in 23 wards in Tokyo, Japan. We chose three 
earthquake risks: the collapse risk of buildings; the earthquake-related fire risk; and the evacuation 
risk due to insufficient infrastructures (Figure 1). With considerations for summaries of building 
types/characteristics, and landform/geological types, the collapse risk of buildings was investigated 
based on the degree of liquefaction and subsidence of the ground, and the fire risk was estimated by 
a potential of fire occurrence and fire extensions caused by the effects of earthquake. The 
evacuation risk due to insufficient infrastructures was estimated based on the lack of sufficient open 
space and road networks for evacuations.  

 

 

Figure 1. Three variables used in this study. 

2.2. Methods 

Logarithm transformations were firstly applied to these data. Napier’s constant value was added to 
three risks to avoid negative values prior to the transformation. GW non-negative PCA integrates the 
essence of conventional PCA, non-negative PCA, and GW model.  Given a 𝑛 × 𝑚 matrix 𝑋 consists of 
𝑚 objective variables at 𝑛 observation sites, GWPCA at the 𝑖-th location with coordinates (𝑢&, 𝑣&) on 
the geographic space decomposes the GW variance-covariance matrix of X, which is defined by 𝛴& =
𝑋*𝑊&𝑋, as follows: 

𝐿&𝑉&𝐿&* = 𝛴&,  

Equation 1 
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where 𝐿&  is a GW matrix of eigenvectors and 𝑉& is a GW diagonal matrix of eigenvalues. 𝑊& is a 
diagonal matrix of geographic weights that can be generated using a kernel function. In the case 
study, we used a bi-squared function for the 𝑗-th diagonal: 

𝑤&1 = 231 − 6
789
:
;
<
=
<

 if	B𝑑&1B < 𝑏,

0  otherwise
  

Equation 2 

 

where the bandwidth 𝑏 is the geographic distance 𝑏 and 𝑑&1 is the distance between spatial 
locations of the 𝑖-th and 𝑗-th locations in the data. 𝑏 was arbitrary determined as 1200 (38.2% of 𝑛 in 
this study). Optimization approaches such as Leave-one-out residual (LOOR) found in Harris, 
Brunsdon, and Charlton (2011) for GWPCA is under development.  

The first eigenvector 𝑙&O for GWPCA at the location 𝑖 is applied so that: 

𝑙&O = 𝑎𝑟𝑔𝑚𝑎𝑥	𝑙&*𝛴&𝑙&, 		𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜	||𝑙&|| = 1  

Equation 3 

 

where 𝑙&O is the 𝑚-length first column of the GW eigenvector matrix 𝐿&  at the location 𝑖. Finally, the 
GW non-negative PCA uses an additional restriction: 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡	𝑡𝑜		𝑙& >= 0,  

Equation 4 

 

so that all eigenvectors at any locations are non-negative.  

The MCI was calculated by a weighted geometric mean with the use of the result of GW non-
negative PCA written as: 

𝑀𝐶𝐼& = ^∏ 𝑥&,`a
b8cd

`eO f
b
g,  

Equation 5 

 

where 𝑥&,` and 𝑙&`O  are the 𝑘-th variable and its fitst eigenvector at the location 𝑖, respectively, and 
are both non-negative. 
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The GW non-negative PCA function was developed based on the combination of the nsprcomp 
function in the nsprcomp package (Sigg and Buhmann 2008) and the gwpca function in the 
GWmodel package (Gollini et al. 2015) in the R environment. 

3. Results 

Figure 2 indicates the MCI calculated from GW non-negative PCA and finds many patches with 
relatively higher risks surrounding the centre of the study area.  We would like to know how the 
degree of each risk contributes to this MCI locally.  

 

Figure 2. Multidimensional composite index built by GW non-negative PCA. 

GW non-negative PCA gives spatial surfaces of the first eigenvector shown in Figure 3. The first 
eigenvector map (not shown) of GWPCA indicates many aggregated areas with negative values, 
suggesting the difficulty of building a MCI. Spatial surfaces of the first eigenvector, used as 
weightings of the geometric mean for the MCI, demonstrates how the degree of contributions to the 
MCI from variables vary spatially. The collapse risk variable is likely to contribute to the MCI 
relatively high in the middle-east part of the area with a high density of buildings on reclaimed land 
or an alluvial plain. The fire risk variable is likely to contribute to the MCI being relatively high in the 
north-east part of the area and surrounding the centre of the Tokyo. The evacuation risk variable 
tends to contribute to the MCI being relatively high in the western side of Tokyo. 
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Figure 3. Spatial distribution of eigenvectors for GW non-negative PCA. 

4. Conclusions 

In this study, we developed and proposed GW non-negative PCA for building a MCI while allowing 
for spatial variations in the first eigenvector, which suggests the degree of contributions to the MCI. 
GW non-negative PCA adapts standard GWPCA for this purpose, as standard GWPCA may load 
negatively in some areas, causing difficulties in MCI construction. Our demonstrated approach 
provides detailed local information of earthquake risks hidden in any global measure of MCI, and is 
transferable to many other domains. 
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