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Abstract 

Spatial variability in soil, crop, and topographic features, combined with temporal 

variability in weather can result in variable annual yield patterns within a paddock.  The 

complexity of interactions between these yield-limiting factors requires specialist 

statistical processing to be able to quantify spatial and temporal variability, and thus 

inform crop management practices. 

This paper evaluates the role of multivariate linear regression and a Cubist regression 

model to predict spatial variability of maize-grain yield at two sites in the Waikato 

Region, New Zealand. The variables considered were: crop reflectance data from satellite 

imagery (Sentinel 2 and Landsat 8), soil electrical conductivity (EC), soil organic matter 

(OM), elevation, rainfall, temperature, solar radiation, and seeding density. The datasets 

were split into training and validation sets, proportionally 75% and 25% respectively. 

Both models learn using 10-fold cross-validation. Statistical performance was evaluated 

by leaving out one year of yield data as the validation set for each iteration, with all 

remaining years included in the training set for building the prediction models. 

In the multiple-year analysis, the Cubist model (RMSE=1.47 and R
2
=0.82 for site 1; 

RMSE=2.13 and R
2
=0.72 for site 2) produced a better statistical prediction than the MLR 

model (RMSE=2.41 and R
2
=0.51 for site 1; RMSE=3.37 and R

2
=0.30 for site 2) for the 

prediction of the validation set. However, for the leave-one-year-out analyses, the MLR 

model provided better statistical predictions (RMSE=1.57 to 4.93; R
2
 = 0.15 to 0.31) than 

the Cubist model (RMSE = 2.62 to 5.9; R
2
 = 0.05 to 0.14) for Site 1. For Site 2, both 

models produced poor results. 

Yield data for additional years and inclusion of more independent variables (e.g. soil 

fertility and texture) may improve the models. This analysis demonstrates that there is 

potential to use statistical modelling of spatial and temporal data to assist farm 

management decisions (e.g. variable rate application, precision land levelling, irrigation, 

and drainage). Once the functional relationship between within-paddock yield potential 

and complementary variables is established, it should be possible to provide an accurate 

management prescription, enabling variable rates of an input (e.g. plant density, fertiliser) 

to be applied automatically across the paddock based on the “yield-input” response curve. 
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1. Introduction 

The practice of precision farming in the New Zealand (NZ) arable sector began in the early 1990s. 

Since then, there has been wide-scale uptake of precision farming tools such as guidance systems and 

variable-rate irrigation. However, the commercial uptake of variable rate applications (VRA) (which 

have the potential to improve farming efficiency) has been limited due to the lack of available 

information to estimate yield response (Holmes and Jiang, 2018). 

With the increasing availability of regularly captured spatial data and publicly-available satellite 

imagery and climatic records, there is potential to use this information to inform farm 

management decisions. However, appropriate spatial analysis techniques are still limited for this 

type of application. Progress has been made on delineating management zones (MZs) within-

paddocks to represent similar yield-limiting factors based on a variety of spatial information (e.g. 

historical yield data, geo-referenced aerial photographs, soil and topography features) using spatial 

classification techniques (Khosla et al., 2010; Hedley et al., 2017; Holmes and Jiang, 2018). From 

this, a single rate of an input (e.g. fertiliser, seeding rate) can be applied to each MZ. However, it is 

difficult to quantify spatial yield and temporal variability without a detailed level of understanding 

of yield potential and crop response to specific variables (e.g. climate, crop type, management 

practices) (Kitchen et al., 2003; Guastaferro et al., 2010). 

Statistical modelling techniques (e.g. stepwise multiple linear regression) have been used to help 

understand the relationship between crop yield and measured soil and site parameters, using 

large, spatial, multivariate datasets. Improved results have also been reported with more complex 

machine learning techniques such as neural networks (Kitchen et al., 2003; Drummond, 2003). 

However, the implementation of neural networks can be computationally time-expensive. The 

time used for training the model could vary from hours to weeks depending on the structure of the 

neural network (e.g. the number of hidden layers, neurons) and the optimisation methods, which 

increases the difficulty of processing spatially-dense precision farming data.  

This paper presents an approach that attempts to estimate yield by integrating spatial yield data, 

seeding density, high-precision elevation points, multispectral satellite imagery (i.e. NASA’s 

Landsat-8 and Sentinel-2 ESA’s missions), soil EC, and meteorological data. The approach evaluated 

was the application of a multivariate linear regression (MLR) and a Cubist regression model to predict 

within-paddock maize-grain yield potential. It is hypothesised that such a modelling approach can 

help farmers modify crop management practices to maximise yield and minimise costs. 

 

2. Method 

2.1. Sites 

Two sites in Waikato were chosen for this study because of their consistent within-site management 

histories.  Site 1 (175.372 E, -37.835 S) is located at Tamahere, 10 km south of Hamilton.  It is a 10-

ha paddock which has been dedicated to growing maize. Spatial yield data of maize (Zea mays) 

grain was collected over four years (2014, 2015, 2017, and 2018) by a yield monitor fitted on an 8-

row (6 m swath) combine harvester with a GPS receiver.  Site 2 (175.487 E, -37.676 S) is a 23-ha 

paddock located 5 km southwest of Morrinsville. Three years of maize-grain yield data (2014, 2017 
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and 2018) were collected. For both sites, spatial data points were recorded at 1-second intervals 

during harvest. 

 

2.2. Data modelling 

Models used 

The two statistical methods used for the analysis were multivariate linear regression (MLR) and 

Cubist tree regression. The Cubist regression model is a technique primarily used in remote sensing 

studies for handling large datasets and has, in the past, reported promising results when predicting 

continuous variables. It has a faster training speed than other computationally intensive machine 

learning methods such as random forest and neural networks (Aviv and Lundsgaard- Nielsen, 2017; 

Noi et al., 2017). For MLR, the dependent variable (yield) needs to be normally distributed. To 

achieve a normal distribution, the historic yield was transformed using natural logarithm. 

Multiple-year analysis 

The “split-sample” approach was used to measure prediction accuracy, in which a subset (validation 

set) of the data is withheld from training. A measure of the accuracy of prediction on this validation 

set is then reported. In the multiple-year analysis, data subsets were created from the maize data 

for all available years (2014, 2015, 2017 and 2018). Each training set consisted 75% of the data, 

randomly sampled (with no replacement), and each validation set contained the remaining 25%. 

Ten-fold cross-validation was then performed to select the best model parameters in order to 

optimise model performance. In this procedure, the data are divided into 10 subsets of equal size. 

The regression technique is then repeated 15 times, with each repetition leaving out one of the 

validation subsets, and using only that subset to compute the root mean square error (RMSE). 

Leave-out-one-year analysis 

Because of the spatially sparse meteorological data, multiple-year data was cross-validated by 

withholding one year of data as the validation set for each iteration, with all remaining years 

included in the training set. The training set was used to predict yields for the year that was held 

out as a validation set. This process was iterated over the data for all the years and RMSEs were 

computed. This will provide an indication of the ability of the trained model to handle new 

information (i.e. yield data collected from an additional harvest). 

 

3. Results 

3.1. Model outputs 

Multiple-year analysis 

For both sites, both models demonstrated reasonable accuracy for predicting yield (Table 1), since 

the prediction errors for the validation set (RMSEs) were smaller than the standard deviation (SD) 

of the multiple-year predictions. For both sites, the cubist model showed that it was able to 

explain 70% - 80% of yield variation. This is better than MLR which explained 30% - 50% of the 

variation. 
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 MLR model Cubist model Observed yield 

 Site 1 

 RMSE R
2
 RMSE R

2
 Mean SD 

Training  0.27 0.47 0.16 0.81 10.06 3.36 

Validation 2.41 0.51 1.47 0.82 10.05 3.36 

 

 Site 2 

 RMSE R
2
 RMSE R

2
 Mean SD 

Training  0.34 0.29 0.22 0.69 11.03 4.02 

Validation 3.37 0.31 2.13 0.72 11.03 4 

 

Table 1: Prediction results of the multiple-year analysis in training and validation. 

 

Leave-out-one-year analysis 

In the leave-out-one-year analysis, the results provided by the Cubist model are less accurate. The 

MLR model produced lower RMSEs and higher R2 than the Cubist model for all individual years for 

Site 1 (Table 2). The higher RMSEs in the Cubist model may be a result of skewed data and suggests 

that the more complex machine learning models do not necessarily perform better at predicting 

within-paddock yield potential for a new harvest than a simple linear model as the data 

distribution is often unknown. The predicted yield maps are visually presented in Figure 1, 

contrasting observed with predicted maize yield for all available years. 

 

 MLR model Cubist model Observed yield 

 Site 1 

Leave out RMSE R
2
 RMSE R

2
 Mean SD 

2014 4.93 0.28 5.9 0.14 8.54 3.6 

2015 3 0.18 3.51 0.05 13.5 3.18 

2017 1.57 0.31 2.92 0.08 7.93 1.61 

2018 1.85 0.15 2.64 0.14 11.23 1.84 

 

 Site 2 

Leave out RMSE R
2
 RMSE R

2
 Mean SD 

2014 9.09 0.3 7.33 0.09 12.44 6.3 

2017 3.91 0.15 3.04 0.03 10.15 2.72 

2018 3.15 0 2.22 0.05 10.71 1.69 

 

Table 2: Prediction results of the leave-out-one-year analysis. 
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(a) Observed yield 2014                               (b) Predicted yield 2014 

 

(c) Observed yield 2015                               (d) Predicted yield 2015 

 

(e) Observed yield 2017                               (f) Predicted yield 2017 
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(g) Observed yield 2018                               (h) Predicted yield 2018 

Figure 1: Observed vs predicted maize yield maps (each yield map was normalised). 

 

4. Discussion and conclusion 

The results indicate that there is a potential to predict within-paddock crop yield using statistical 

modelling of spatial and temporal data. Given the model responses, yield data for additional years, 

and inclusion of further relevant variables may improve the model. Data consistency is a potential 

problem in the acquisition of useful remote sensing imagery at an appropriate growth stage for 

crop management in New Zealand, due to cloud coverage. Nevertheless, UAVs (unmanned aerial 

vehicles) are increasingly being used in agricultural applications and may offer alternatives to 

currently available satellite imagery by providing more relevant scales of data capture and the 

ability to capture information at more appropriate times of the year. Whilst acquiring better data 

to improve the model might remain a challenge in the near future, the application of the approach 

used in this study offers advantages over techniques that use spatial data collected from intensive and 

expensive grid sampling (Drummond et al., 2003; Liu et al., 2001). The minimal costs associated with 

the approach employed in this study are thus more likely to be of commercial interest to New 

Zealand farmers and may potentially inform crop management thereby contributing towards 

improved yield and farm input efficiencies. 
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