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Abstract

Parameter uncertainty, restricted information and insufficient transparency of many environ-
mental models are often limiting factors in their use and application. The aim of this work is to
demonstrate how scientific workflows can be designed and implemented to address these limita-
tions in use and application of environmental models. Specifically, this work shows an application
of scientific workflows and their potential in delivering a transparent, reproducible, integrated
and automated tool for a parameter setting decision support. The results show how parame-
ter uncertainty can be captured and managed using a freely-available and open-source scientific
workflow management system (SWFMS). Specifically, scientific workflows integrate environmen-
tal modelling and a machine learning technique to discover and select appropriate parameter
settings. This work shows a case study with the particular example of environmental modelling
for estimating solar radiation potential of building rooftops. In general, an appropriate user
support and management of parameter uncertainty help to broader usage and warrantability of
environmental models and their outputs, both in research related work and in interdisciplinary
analysis for decision making.

Keywords: scientific workflows, environmental modelling, decision support, parameters.

1 Introduction

In general, a problem related with setting parameter values can be related to many limiting factors
in environmental modelling. For example, restricted information and lack of transparency (“black-
box”) of environmental models may affect their use and practical functionality. A limited knowledge
and insufficient transparency of models together with their complexity are some of restricting factors
which may enhance error propagation in the modelling (Ascough et al., 2008; Refsgaard et al.,
2007).

Another restricting and relevant factor is parameter uncertainty in the modelling. Parameter un-
certainty refers to uncertainty related to imprecision and inaccuracy of determining and selecting
parameter setting values Walker et al. (2003). In general, parameter settings for environmental
models can be derived from related literature, real observations or based on calibration or estima-
tion methods (Gallagher and Doherty, 2007; Maier et al., 2008). However, for novice users selecting
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appropriate parameter settings can be a challenging task. A study by Refsgaard et al. (2007) showed
that user’s experience played a significant role in the final results of an environmental modelling.
For instance, lack of domain knowledge related to model inputs imposed difficulties for novice users
to choose a correct decision in the modelling.

One of the ways to address this problem is to design and implement a transparent and reproducible
decision support tool to help inexperienced users in use and application of environmental models.
This study explores usefulness and practical applicability of scientific workflows in providing an
assistance for selecting appropriate parameter settings. Specifically, this work demonstrates how
transparent, reproducible, integrated and automated method such as the scientific workflows can be
used to provide users support and to widen usage and warrantability of environmental models.

The remainder of the paper is organized as follows. To address this problem, section 2 provides
introduction to scientific workflows and scientific workflow management system (SWFMS). Follow-
ing section 3 looks at background of the specific environmental model for predicting solar radiation
potential (the Solar Analyst). Section 4 demonstrates a case study with an example of scientific
workflows designed to integrate environmental modelling of solar radiation with decision tree learn-
ing to find appropriate parameter settings. The last section 5, concludes the paper.

2 Scientific workflows

Scientific workflows are a procedure or method to execute complex scientific analysis which predomi-
nantly has a goal to capture and document all steps involved in preparing, processing and presenting
scientific data (Ludscher and Goble, 2005). According to Gil et al. (2007); Granell et al. (2013),
and Kitzes et al. (2017) scientific workflows improve reproducibility, transparency, documenting,
flexibility, management, integration, automation, and computing of complex scientific studies. Im-
provement in reproducibility, transparency and documenting is illustrated through an open access,
detailed description and self-documenting of scientific workflows. Different computational assets
such as multiple scientific data sets, models, parameters, scripts and programming tools can be
easily integrated with a flexibility to automate every step in scientific workflows. These characteris-
tics can improve understanding of environmental models and provide a decision support to prevent
errors in the outputs they generate.

Figure 1: A simple KNIME scientific workflows for environmental modelling of solar radiation
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The design and implementation of scientific workflows is supported in freely-available and open
source SWFMS such as Kepler, VisTrails and KNIME which provide a user-friendly graphic interface
for easier design, implementation, execution and documenting. Figure 1 illustrates a simple example
of scientific workflows designed in KNIME (Bakos, 2013; Berthold et al., 2009). Each node in this
scientific workflows presents a task or a data process. A state for each node is illustrated with the
traffic lights whether the task has been processed (green), is ready to be processed (yellow) or has
not been processed yet (red).

Application of scientific workflows has a potential in many interdisciplinary scientific studies. For
example, a geospatially enabled scientific workflows can be designed for an observation and mod-
elling different physical systems. In their review, Granell et al. (2013) stated that scientific workflows
provides a unique set of tools with elements of a component-based support for environmental mod-
elling. Zyl et al. (2012) designed scientific workflows as a system support for wildfire spatiotemporal
analysis to examine improvements in accessing, implementing and integrating geospatial data into
the scientific workflows. Another study conducted by Kaster et al. (2005) involved application of
scientific workflows for agricultural environmental modelling. The system support provides an open
and transparent tool for documenting, monitoring and assessing impacts of fertilizing process on
environment (soil and water). In the next section we introduce one of the most commonly used
solar radiation models, the Solar Analyst (SA).

3 Solar Analyst

Environmental modelling of solar radiation is important, both in many scientific disciplines (en-
gineering, geospatial, and environmental) and for industry related projects (renewable energy and
agriculture). For example, modelling solar radiation potential in cities plays a significant role in
urban planning and development of sustainable and livable cities. Thus, many studies related to
modelling solar radiation emerged in the past (Kodysh et al., 2013; Li et al., 2015; Redweik et al.,
2013; Santos et al., 2014). This model uses an upward-looking viewshed algorithm to calculate solar
radiation potential for any given locations by including sky obstruction from surrounding objects
(Rich et al., 1994; Fu and Rich, 1999). Figure 2 illustrates an upward looking hemispherical view-
shed, and a yellow line defines a boarder between visible and obstructed sky for a given location.
The area of interest is defined by a Digital Surface Model (DSM) as the main spatial data input.
Consequently, the SA runs a viewshed analysis and estimates solar radiation potential in each raster
cell of the DSM.

Figure 2: Upward looking hemispherical viewshed (Fu and Rich, 2000)
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Three main groups of parameters are used in this model:

1. spatial;

2. temporal; and

3. radiation.

Spatial parameters such as latitude, topography of DSM, sky size and number of azimuth directions
for calculating viewhsed relate to a location and spatial context of an area of interest. Temporal
parameters (hours, days, months and year) define a time period of solar radiation exposure. Ra-
diation parameters such as diffuse and transmission proportion determine an intensity of incoming
solar radiation, and azimuth and zenith directions define granularity of distribution for a diffuse
component of incoming solar radiation. These are some of the most significant parameters of this
model, and other parameters can be found in work of Fu and Rich (2000, 1999).

The popularity of this model among modellers with various level of expertise including inexperienced
modellers raises questions about user support, parameter uncertainty and warrantability of outputs
that the SA generates. The next section demonstrates an example of scientific workflows designed
to support parameter-setting for modelling rooftop solar radiation potential with the SA.

4 Design and implementation of scientific workflows

Figure 4 depicts an example of the scientific workflows for parameter-setting support. The design
of this scientific workflows can be divided into two major parts:

1. modelling of solar radiation using different parameter settings; and

2. decision tree learning for appropriate parameter setting.

The following subsections provide deeper understanding about the design and implementation of
this scientific workflows.

4.1 Modelling of solar radiation using multiple parameter settings

This part of the scientific workflows is designed to estimate solar radiation with different parameter
settings. Specifically, a user have freedom and flexibility to use multiple parameters with different
values and to investigate their applicability for modelling. The scientific workflows uses three main
inputs to run the SA:

1. a CSV file with different setting values for parameters;

2. a DSM in raster format for an area of interest (Figure 3); and

3. a geographical latitude of an area of interest.

Table 1 shows the most important and difficult parameters for setting their values. A brute-
force technique to explore appropriate parameter setting with all 46 = 4096 parameter setting
combinations is used to generate parameter inputs for the model. Parameter setting combinations
are iteratively imported, one at a time into a workflow loop (Loop start, Python Script and Loop
End, Figure 4). This workflow loop automates modelling of solar radiation and generates a data
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set for each parameter setting combination. Python Script as a central node of the workflow loop
runs the SA for each iteration.

Parameter Setting 1 Setting 2 Setting 3 Setting 4

Sky size 250 350 450 550
No. calculation directions 8 16 24 32
No. azimuth divisions 8 16 24 32
No. zenith divisions 8 16 24 32
Diffusion proportion 0.1 0.2 0.3 0.4
Transmission proportion 0.4 0.5 0.6 0.7

Table 1: Parameters and their setting values

Generated solar radiation data sets from this workflow loop are aggregated together with all pa-
rameter setting combinations into a new data set. This data set is classified with Numeric Binner
node into three different categories (“Too Low”, “Expected” and “Too High”) based on difference
from a ground truth data observed by meteorological stations in local area.“Too Low” classifies data
bellow the “Expected” range, while “Too High” is considered above the “Expected” range. The
observed ground truth data is captured with no obstruction from surrounding objects and because
of that it is equal to the maximum value of the “Expected” range.

Figure 3: DSM of building rooftops

4.2 Decision tree learning for finding appropriate parameter setting

The first part of this scientific workflows successfully integrates multiple computational assets such
as raster and text data, and R and Python scripts. The second part introduces a decision tree
model which demonstrates workflows’ ability to incorporate multiple models. Decision tree learning
is a type of machine learning which iteratively categorizes a data set based on its most important
features (Russell and Norvig, 2002). In this scientific workflows the decision tree model uses two
algorithms ID3 and C4.5 (Quinlan, 1986, 1993). Both algorithms classify data set by indicating
at each tree node the attributes that have the highest Shannon’s information gain (Shannon and
Weaver, 1949).
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In this case, decision tree learning can be applied to classify different parameter settings based on
the information gained from the output that the model generates. Specifically, decision tree learning
classifies parameter settings based on information gained from three categories of the SA output
(“Too Low”, “Expected” and “Too High”). Decision tree learning classifies and detects appropri-
ate parameter settings based on category “Expected”, while inappropriate parameter settings are
selected by other two categories “Too Low” and “Too High”. The validation of the decision tree
learning is tested by Decision Tree Predictor node and calculated by a Scorer node depicted in
Figure 4.

4.2.1 Decision tree diagram

Figure 5 illustrates a decision tree diagram and each internal node demonstrates a test based on a
parameter setting. Each branch represents the outcome of this test. A yellow node presents the end
of each branch showing one of three categories of the output from the model. Tree branches ending
with “Radiation: Expected” indicate appropriate settings for parameters. Along these branches
novice users can select appropriate settings for model parameters.

Figure 5: Decision tree diagram for parameter-setting support

For instance, Figure 5 illustrates transmission proportion as a root node greater than 0.5 (right-
hand branch) versus transmission proportion of 0.5 or less (left-hand branch) as being the parameter
setting related with the highest information gain in the training data set. A general rule is that
parameter settings placed closer to the root node have stronger influence on the model output. This
decision tree diagram includes two out of six tested parameters. This decision tree also indicates
that settings for parameters such as sky size, number of calculation directions, number of azimuth
and zenith divisions are associated with the lowest information gain in the training data set. Thus,
decision tree learning excludes them from the decision tree diagram. In other words, from six
selected parameters, the most significant are transmission and diffuse proportion. This is a useful
information for novice users and their decision making process of selecting appropriate parameter
settings.
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4.3 Discussion

The application of scientific workflows in this work demonstrates an example of transparent, re-
producible, self-documented, automated, integrated and flexible support tool for parameter set-
ting. Transparency, reproducibility and self-documenting assist inexperienced modellers for deeper
understanding of environmental models and modelling process. In this example description and
open access for each task (node) improves understanding about each step for delivering parame-
ter setting support. The automation of modelling with the workflow loop improves time efficiency
and reduces error for generating scientific data with environmental models. Integration of multi-
ple computational assets such as different data sets, programming languages and models provides
multi-functionality of scientific workflows transforming them into efficient and practical tool. The
decision tree learning provides a graphical support for user’s decisions to correctly select parameter
setting (Figure 5). Decision tree learning have demonstrated accuracy of 91.5% for predicting three
different categories of the model output. Ultimately, the usefulness and practical applicability of
this scientific workflows goes across multiple properties from transparency, documenting and inte-
gration of multiple tasks and different computational assets to an provider of assistance for user’s
decisions in setting parameters of the model.

5 Conclusion and further work

Limiting factors such as lack of transparency (“black-box” models), limited information and param-
eter uncertainty can affect use and application of environmental models. This may be specifically
the case with novice and inexperienced users. This study shows a design and implementation of
the scientific workflows as a decision support tool for parameter setting in environmental modelling.
Specifically, user’s decisions are supported by a decision tree diagram providing an interactive and
transparent guidance for setting parameters. In addition to that, addressing this problem using
scientific workflows helps users to widen understanding of environmental models. On the other
hand, a potential disadvantage can be a complexity of scientific workflows design because they may
involve multiple data flow streams with complex structure.

Our future work may include design and development of different scientific workflows which are able
to provide improvement in reproducibility of models and modelling process. For example, a KNIME
scientific workflows to improve transparency of black-box models by designing and implementing a
modular version of the same model.
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