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Abstract 

Spatio-temporal networks are a useful tool for examining systems such as transport 

networks. However, it is relatively difficult to examine continuous temporal change in the 

properties of network connections. Spatially correlated time series analysis often uses only 

distance to estimate correlations between time series, which is not necessarily applicable 

to a network system. 

Longitudinal data analysis methods that are common in epidemiology and psychology may 

be combined with spatio-temporal network data to capture complex temporal patterns at 

the level of individual observation-units, for example individual network objects. These 

can be used to distil complex temporal information into specific easily interpretable 

variables that represent a specific part, or feature, of a temporal pattern, such as the timing 

of maxima.  

This paper illustrates how these methods could be combined with geographical methods to 

generate meaningful and interpretable results describing spatial variation in temporal 

patterns of temperature in a rail network. Longitudinal methods considered were: multilevel 

modelling and functional data analysis. 

Results show differences across the longitudinal methods used that are likely down to 

necessary differences in model specification. The appropriate parameterisation of each 

method is one of several factors that will affect the utility of these methods to accurately 

capture temporal pattern features in a meaningful way. There is considerable scope for 

further investigation of the utility of these methods through simulation. 
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1. Introduction 

Spatio-temporal networks can be represented as series of networks at discrete time intervals 

(Williams and Musolesi, 2016). This allows temporal variation in the properties of objects in the 

network (nodes) and connections between them (edges). However, this does not represent 

continuous temporal variation, which may be of interest to researchers, and assumes all edge and 

node properties are measured simultaneously. 



Spatially correlated time-series may be used to examine patterns in spatio-temporal data with more 

dense information in the time axis (Kyriakidis and Journel, 1999). Spatio-temporal models are useful 

in a wide range of situations, but often use the distance between objects to estimate spatial 

correlations (Kyriakidis and Journel, 1999, Min et al., 2009, Fotheringham et al., 2015). This restricts 

their use to temporal patterns associated with point locations and may not be suitable for properties 

of network connections as discussed above. 

Several longitudinal data analysis methods used in disciplines such as epidemiology and psychology 

are capable of capturing complex temporal patterns at the level of individual observation-units, for 

example network connections or point locations (Bollen and Curran, 2005, Goldstein, 2011, Ramsay 

and Silverman, 1997). Different longitudinal methods have different advantages and disadvantages 

that affect their ability to accurately capture temporal patterns in different situations (table 1).  

Table 1: Summary of some advantages and disadvantages of three longitudinal data analysis methods 

examined in this paper. Example papers were selected to contain some discussion of the method 

involved as well as an example application. Other information from Blozis et al. (2007), Bollen and 

Curran (2005), Goldstein (2011), Ramsay and Silverman (1997), Sterba (2014), Cole et al. (2010).  

Multilevel models (MLMs) and latent growth curve models (LGCMs) are capable of incorporating 

complex correlation structures into the model, such as those implied by the structure of a spatial 

network, whereas methods like functional data analysis (FDA) do not necessarily account for this 

(Bollen and Curran, 2005, Goldstein, 2011, Ramsay and Silverman, 1997). Information from these 

models could be combined with network analysis or other geographical methods to examine how 

Method Example application Advantages Disadvantages 

Multilevel 

models 

Modelling patterns of 

recovery in patients with bone 

fractures involving joints 

(Kwok et al., 2008) 

Can capture 

complex random 

structures 

Patterns must be parametric 

Error structures must be 

parametric 

Frequent problems with 

convergence 

Latent 

growth curve 

models 

Modelling non-linear patterns 

of height in childhood 

(Grimm et al., 2011) 

Non-parametric 

patterns can be 

captured 

Can capture 

complex random 

variation 

Error structures must be 

parametric 

Non-parametric forms do not 

allow interpolation, limiting 

the ways patterns can be 

represented 

Functional 

data analysis 

Investigating the effect of 

tele-interpersonal 

psychotherapy on depression 

(Woldu et al., 2019) 

Easy estimation 

 

Patterns must be parametric 

Does not capture complex 

random error variation 

SITAR 

method 

Investigating growth patterns 

in teenagers (Cole et al., 

2010) 

Interpretable 

summary of 

patterns 

Inflexible representation of 

pattern – always as three set 

growth curve properties 



temporal patterns vary spatially. Modelling temporal patterns with or without respect to the 

structure of a spatial network will likely affect the results. 

Information representing the whole of each temporal pattern can be difficult to interpret, meaning 

spatial variation in the patterns is hard to understand. Therefore, it may be useful to identify specific 

parts of the pattern that are of interest (hereto referred to as pattern features). For example, the 

timing of the maximum point in the pattern (Aris et al., 2017). Information like this can often be 

recorded as a single numeric variable. Variables representing pattern features could more easily be 

combined information from geographical or network methods to visualise or model spatial variation 

in temporal patterns. 

This paper illustrates the potential for combining longitudinal methods and network analysis to data 

describing daily patterns of temperature for journeys in a simulated rail network and discusses 

differences in results using two longitudinal methods: MLMs, which can account for complex 

random variation, and FDA, which does not. 

2. Methods 

2.1 Data simulation 

A simulated scenario with a simple data structure was used for illustrating methods without the 

complications associated with real data. The known scenario gives some idea of accuracy, but this 

initial study does not involve simulations appropriate for fully assessing the accuracy and precision of 

methods. The outcome of interest was temperature – while this is perhaps not a common outcome, 

it is normally distributed and continuous, which allows for an uncomplicated illustration.  

Figure 1: Map of the simulated rail network used to generate daily temperature data. 

The scenario involves a small simulated underground rail network with four lines (figure 1). Like 

some real underground rail networks, high carriage temperatures often occur in summer, which can 

cause issues such as fainting for passengers. In this example, the network operators are interested in 



identifying where and when the highest temperatures occur to best target their resources to lower 

temperatures. For one summer day, they ask volunteers to carry digital thermometers with them 

and record the maximum carriage temperature they experience during their daily rail travel. 

Longitudinal data were simulated using R to represent the maximum temperatures that volunteers 

recorded for each origin-destination pair (110 total) at various times of the day. The data had a 

hierarchical structure reflecting the rail lines travelled on (Gadd, 2019). Line 3 was simulated to 

reach a higher temperature than others, slightly earlier in the day.  

2.2 Data analysis 

In this example, analyses aimed to find the daily maximum temperature and when this occurred for 

each origin-destination pair. These data were combined with information from network analysis to 

identify if these varied according to which rail lines were used. 

Non-parametric LGCMs and the SITAR method are not capable of identifying maxima in temporal 

patterns, so MLMs and FDA were used to model temporal patterns of temperature for each journey 

on each day. B-splines were used as a basis for both models, with three internal knots in the MLM 

and four in FDA (Pinheiro et al., 2019, Ramsay et al., 2018, Wang and Yan, 2018). The number was 

lower in the MLM to aid convergence. Model derivatives were used to record the maximum 

temperature reached for each journey-day combination and the time at which this occurred.  

The R igraph package was used to identify which edges in the network were used to complete each 

journey in the data (Csardi and Nepusz, 2006). For each edge in the network, the mean maximum 

temperature and mean time of this maximum for all origin-destination paths that travelled through 

it was calculated. This information was visualised in network maps. 

Using the path information, the rail lines that each journey used were identified. Maximum 

temperature and time of maximum were modelled with the inclusion of each rail line as explanatory 

variables. 

3. Results 

Figures 2 and 3 show average maximum temperatures and times of maximums for journeys using 

each edge in the network, respectively. For both MLMs and FDA, edges on line 3 reach higher 

maximum temperatures than other lines and the overall pattern of line temperatures is similar. 

However, temperature estimates from FDA tend to be higher. A difference in the time of maximum 

temperature on different lines is less apparent. The difference in estimates of time of maximum 

between the two models is quite large for some segments, generally towards the ends of the lines 

on segments used in fewer origin-destination paths. 

Tables 2 and 3 show results from models investigating the relationship between rail lines used in 

each origin-destination path and their maximum temperature or time of maximum for each 

longitudinal method. For models of MLM- and FDA-estimated maximum temperature, the 

coefficients for Line 3 are very similar and larger than other lines, suggesting routes using line 3 have 

higher temperatures. The coefficients for other lines are more varied. The line 3 coefficient in both 

models for time of maximum temperature is the most negative, suggesting that the average time of 



maximum is earliest for journeys using line 3. However, the line 3 coefficients are more varied 

between models using MLM- and FDA- estimated time of maximum temperature than of maximum 

temperature. 

Figure 2: Maps with labels showing the average maximum temperature for journeys through each rail 

network edge, as estimated by multilevel modelling (MLM) and functional data analysis (FDA). 

Figure 3: Maps with labels showing the average time of maximum temperature for journeys through 

each edge on the rail network, as estimated by multilevel modelling (MLM) and functional data 

analysis (FDA). 



Covariate Coefficient (95%CI) 

Outcome: Maximum temperature Outcome: Time of maximum 

Intercept 22.93 (22.8,23.06) 14.71 (14.51,14.91) 

Line1 -0.37 (-0.49,-0.25) 0.85 (0.66,1.03) 

Line2 0 (-0.11,0.12) 0.25 (0.07,0.43) 

Line3 5.83 (5.71,5.94) -0.52 (-0.7,-0.34) 

Line4 0.13 (0.01,0.24) 1.18 (1.01,1.36) 

Table 2: Results from models investigating the relationship between lines used in journeys and the 

maximum temperature experienced or the time of this maximum, as estimated by MLMs.  

Covariate Coefficient (95%CI) 

Outcome: Maximum temperature Outcome: Maximum temperature 

Intercept 22.57 (21.69,23.46) 15.6 (14.22,16.97) 

Line1 0.21 (-0.61,1.02) 0.39 (-0.87,1.65) 

Line2 0.28 (-0.51,1.07) -0.34 (-1.57,0.89) 

Line3 5.81 (4.99,6.62) -1.19 (-2.45,0.07) 

Line4 0.68 (-0.12,1.47) 1.41 (0.18,2.64) 

Table 3: Results from models investigating the relationship between lines used in journeys and the 

maximum temperature experienced or the time of this maximum, as estimated by FDA. 

4. Discussion 

This paper provides an example application of longitudinal data analysis methods to examine spatio-

temporal variation in network data. Information from the longitudinal methods was combined with 

information from network analysis to visualise and model variation in temporal patterns of 

temperature on train journeys according to network properties. The results were meaningful and 

easily interpretable suggesting the methods could provide a useful option for examining spatio-

temporal variation. This example application focuses one method of combining longitudinal and 

geographical methods: combining information from network analysis (rail lines used for each 

journey) with information from longitudinal data analysis (maximum temperature) in models or 

visualisations. However, a wide range of other pattern features, types of network, network analysis 

methods and ways of combining them could be used.  

Results from analyses using two different longitudinal methods (MLMs and FDA) found some similar 

patterns, but did not entirely agree. MLMs were specified with fewer splines than FDA to aid 

convergence. This could have altered their ability to accurately recover maximum temperatures and 

their timing, resulting in different estimates. The accuracy of the methods used here rely on the 

ability of longitudinal data analysis methods to recover pattern features such as maximum 

temperature. Their ability to do this accurately is likely to be affected by several factors including 

model specification, data structure and the complexity of the temporal pattern of interest. It is 

important to identify how different factors affect the accuracy of different longitudinal methods to 

make recommendations about when each method will provide optimal accuracy.  

When examining temporal variation, MLMs accounted for the error structure in the data and FDA 

did not. This is unlikely to affect point estimates of pattern features, but will mean that MLMs 

estimate error variation more accurately than FDA (Goldstein, 2011). However, combining the 



longitudinal and network methods is a two-step process. In using point estimates of maximum 

temperature and time-of maximum in models or visualisation, we discard the uncertainty in these 

estimates, resulting in overly narrow confidence intervals for the results shown in tables 2 and 3 

(Sayers et al., 2017). Further work is therefore needed to investigate the best way of accounting for 

this uncertainty and how important it is to capture the random structure in the longitudinal model. 

5. Conclusion 

This research presents new ideas for the combination of longitudinal data analysis with geographical 

methods to investigate spatio-temporal variation. The methods provided meaningful, easily 

interpretable results, but there were some differences between the two longitudinal methods 

considered. Future simulations should be considered to investigate which longitudinal methods 

extract pattern features most accurately for a range of different situations. 

6. Acknowledgements 

Sarah Gadd is funded by the Economic and Social Research Council. Alison Heppenstall is funded by 

an Economic and Social Research Council-Alan Turing fellowship. Peter Tennant and Mark Gilthorpe 

are funded by the Alan Turing Institute. 

7. References 

 Aris, I. M., Bernard, J. Y., Chen, L. W., Tint, M. T., Pang, W. W., Lim, W. Y., Soh, S. E., Saw, S. 

M., Godfrey, K. M., Gluckman, P. D., Chong, Y. S., Yap, F., Kramer, M. S. & Lee, Y. S. 2017. 

Infant body mass index peak and early childhood cardio-metabolic risk markers in a multi-

ethnic Asian birth cohort. Int J Epidemiol, 46, 513-525. 

Blozis, S. A., Conger, K. J. & Harring, J. R. 2007. Nonlinear latent curve models for multivariate 

longitudinal data. International Journal of Behavioral Development, 31, 340-346. 

Bollen, K. A. & Curran, P. J. 2005. Latent curve models: a structural equation perspective, Hoboken, 

NJ, John Wiley & Sons. 

Cole, T. J., Donaldson, M. D. C. & Ben-Shlomo, Y. 2010. SITAR--a useful instrument for growth 

curve analysis. International journal of epidemiology, 39, 1558-1566. 

Csardi, G. & Nepusz, T. 2006. The igraph software package for complex network research. 

InterJournal, Complex Systems, 1695, 1-9. 

Fotheringham, A. S., Crespo, R. & Yao, J. 2015. Geographical and temporal weighted regression 

(GTWR). Geographical Analysis, 47, 431-452. 

Gadd, S. 2019. Longitudinal Simulation Tool [Online]. Available: 

github.com/sarahcgadd/longitudinal_simulation_tool. 

Goldstein, H. 2011. Multilevel statistical models, Chichester, West Sussex, Wiley. 

Grimm, K. J., Ram, N. & Hamagami, F. 2011. Nonlinear Growth Curves in Developmental Research. 

Child Development, 82, 1357-1371. 

Kwok, O.-M., Underhill, A. T., Berry, J. W., Luo, W., Elliott, T. R. & Yoon, M. 2008. Analyzing 

Longitudinal Data With Multilevel Models: An Example With Individuals Living With Lower 

Extremity Intra-Articular Fractures. Rehabilitation Psychology, 53, 370-386. 

Kyriakidis, P. C. & Journel, A. G. 1999. Geostatistical space–time models: a review. Mathematical 

geology, 31, 651-684. 



Min, X., Hu, J., Chen, Q., Zhang, T. & Zhang, Y. Short-term traffic flow forecasting of urban network 

based on dynamic STARIMA model.  2009 12th International IEEE conference on intelligent 

transportation systems, 2009. IEEE, 1-6. 

Pinheiro, J., Bates, D., Debroy, S., Sarkar, D. & Team, R. C. 2019. nlme: Linear and Nonlinear Mixed 

Effects Models. R package version 3.1-139. 

Ramsay, J. O. & Silverman, B. W. 1997. Functional data analysis, London;New York;, Springer. 

Ramsay, J. O., Wickham, H., Graves, S. & Hooker, G. 2018. fda: Functional Data Analysis. R 

package version 2.4.8. 

Sayers, A., Heron, J., Smith, A., Macdonald-Wallis, C., Gilthorpe, M., Steele, F. & Tilling, K. 2017. 

Joint modelling compared with two stage methods for analysing longitudinal data and 

prospective outcomes: A simulation study of childhood growth and BP. Statistical Methods in 

Medical Research, 26, 437-452. 

Sterba, S. K. 2014. Fitting Nonlinear Latent Growth Curve Models With Individually Varying Time 

Points. Structural Equation Modeling-a Multidisciplinary Journal, 21, 630-647. 

Wang, W. & Yan, J. 2018. splines2: Regression Spline Functions and Classes. R package version 

0.2.8. 

Williams, M. J. & Musolesi, M. 2016. Spatio-temporal networks: reachability, centrality and 

robustness. Royal Society open science, 3, 160196-160196. 

Woldu, H., Heckman, T. G., Handel, A. & Shen, Y. 2019. Applying functional data analysis to assess 

tele-interpersonal psychotherapy's efficacy to reduce depression. Journal of Applied Statistics, 

46, 203-216. 

 


