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Abstract 

Cellular Automata (CA) have formed an important part of the geocomputational and spatial analysis 
toolbox for three decades. Some of the most important components of CA are the transition rules to 
determine the changes in cell states across iterations. These are applied at the micro-sale, but lead to 
emergent patterns at the macro-scale. An important consideration for transition rules is the spatial extent 
over which they will be valid.  One does not expect the same rules to apply equally across an entire 
region, yet most CA implementations only support one set of transition rules that are applied 
everywhere. In this paper, a vector CA model with spatially partitioned transition rules is proposed to 
identify the expansion of urban residential areas across heterogeneous study area. Initial experiments 
using two sub-regions of Ipswich, Queensland, Australia, indicate that the spatially partitioned approach 
can improve the accuracy of vector CA.  

Keywords: Vector-based CA, Partitioned rules, Ipswich City, Residential area, Misclassification 
frequency 

 

1. Introduction 

CA models have been employed in the exploration of a wide variety of urban phenomena, from traffic 
simulation and regional-scale urbanization to land-use dynamics, polycentricity, historical 
urbanization, and urban development (Torrens and O'Sullivan, 2001). For spatial scientists and urban 
planners, there is also an urgent need to predict future developments and land use change in an 
understandable way. Numerous computer-based models have been developed to address these 
issues, including CA (Cellular automata) (Wu and Webster, 1998; Li, Xia and Yeh, 2002; Liu et al., 2007), 
CLUE/CLUE-S (Conversion of Land use and its Effects at small region extent) (Verburg, P.H. et al., 1999; 
Verburg, P. and Overmars, 2007), MAS (Multi-agent system) (Heppenstall et al., 2011; O’Sullivan et 
al., 2016), SD (System dynamic) (He et al., 2006; Xu and Coors, 2012) and What If (Pettit, 2005; Pettit 
et al., 2015).  

Among all land use change models, CA and its extension models have been widely applied due to their 
capability of modelling complex spatial dynamics on the basis of a set of ‘simplified’ transition rules 
(White et al., 1997). Abundant results have been achieved in the field of CA modelling, which can be 
classified into four groups: cell format (Flache and Hegselmann, 2001; Moreno et al., 2008), transition 
rules (Li, Xuecao et al., 2014; Almeida et al., 2008), neighbourhood configuration (Moreno et al., 2009), 
sensitivity and uncertainties (Kocabas and Dragicevic, 2006; Şalap-Ayça et al., 2018). While transition 
rules have attracted more attention than other parameters, there is still a key problem to be discussed 
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and solved: Does a single set of transition rules contain enough information for all sub-regions of the 
study area? 

Here we propose a spatially partitioned CA model to address the above question. Instead of using one 
set of general transition rules across the entire study region, the transformations of cells are 
determined by spatially local rules, partitioned by sub-regions. Using a PACA (partitioned and 
asynchronous cellular automata) model, Ke et al. (2016) simulated the process of urban growth during 
2005 to 2013. Taking Yangtze River middle reaches megalopolis (YRMRM) as the study area, it is also 
indicated by Xia et al. (2019) that the development of partitioned transition rules for sub-regions can 
greatly improve both the overall and local accuracies of CA model. Concerning the afore-mentioned 
reports, it has been indicated that the spatial heterogeneity of urban growth can be better 
represented by using differential transition rules for partitioned zones. Additionally, these previous 
approaches used raster based CA models, while vector CA models have the potential to improve land 
use change modelling, particularly in urban environments.  The aim of this research is therefore to 
assess the effectiveness of a spatially partitioned vector CA model for land use change modelling. 

 

2. Methodology 

2.1. Using PSO for the discovery of transition rules 

In this research, particle swarm optimization (PSO) is utilized for the calibration of transition rules. 
PSO is a useful approach for the discovery of transition rules as it captures the complex non-linear 
processes of urban land use change (Feng et al., 2011) and deals well with the large number of 
calibration parameters (Pinto et al., 2017).  

Similar to the relationship between cell and CA, particle is the smallest unit of PSO, it equals to one 
potential solution of the target problem, and is comprised of two parts: velocities and positions 

 𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = (𝑣𝑣𝑛𝑛,𝑃𝑃𝑛𝑛)  

Equation 1 

where n is the dimension of target problem, 𝑣𝑣𝑛𝑛 and 𝑃𝑃𝑛𝑛 are the velocity and position of corresponding 
particle at a specific time point. They can be represented by n velocities and positions at time t: 

 �
𝑣𝑣𝑛𝑛 = (𝑣𝑣1,𝑣𝑣2, … , 𝑣𝑣𝑛𝑛, 𝑡𝑡)
𝑃𝑃𝑛𝑛 = (𝑃𝑃1,𝑃𝑃2, … ,𝑃𝑃𝑛𝑛, 𝑡𝑡)    

Equation 2 

 

The combination of velocity and position in each particle are updated according to individual and 
global best positions: 

�𝑣𝑣
(𝑡𝑡 + 1) = 𝑤𝑤 ∗ 𝑣𝑣(𝑡𝑡) + 𝑐𝑐1 ∗ (𝑃𝑃𝑖𝑖𝑖𝑖 − 𝑃𝑃(𝑡𝑡)) + 𝑐𝑐2 ∗ �𝑃𝑃𝑔𝑔𝑔𝑔 − 𝑃𝑃(𝑡𝑡)�

𝑃𝑃(𝑡𝑡 + 1) = 𝑃𝑃(𝑡𝑡) + 𝑣𝑣(𝑡𝑡 + 1)
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Equation 3 

where 𝑤𝑤 is the weight of velocity, 𝑐𝑐1 and 𝑐𝑐2 are individual and global learning factors. 𝑃𝑃𝑖𝑖𝑖𝑖 is the best 
individual position of particle i, and 𝑃𝑃𝑔𝑔𝑔𝑔 is the best global position of all particles, namely the best one 
of all best individual positions. In addition, 𝑣𝑣(𝑡𝑡 + 1)  is the velocity of a particle at time t+1, P(𝑡𝑡) and 
𝑃𝑃(𝑡𝑡 + 1) are the positions of particle at time t and t+1, accordingly. 

The transfer probability P(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) of a single cell i can be calculated by Equation 4: 

P(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖) =
1

1 + exp�−�𝑎𝑎0 + ∑ 𝑓𝑓𝑖𝑖 ∗𝑖𝑖=𝑛𝑛
𝑖𝑖=1 𝑤𝑤𝑖𝑖��

∗ (𝑏𝑏0 + 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛) 

 
Equation 4 

Where P(𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶) is the probability of 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖, 𝑎𝑎0 and 𝑏𝑏0 are two constants, 𝑓𝑓𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑤𝑤𝑖𝑖  are the normalized 
values of driving factors and corresponding weights, norNei is the normalized neighbourhood 
configuration. In this study, 𝑤𝑤𝑖𝑖 are derived from PSO method, and n is the number of driving factors.  

 

2.2. Validation method 

Two indices are used here to validate the performances of PSO-CA models: Cumulative producer’s 
spatial accuracy and misclassification frequency. 

Cumulative producer’s spatial accuracy (CPSA) 

Producer’s spatial accuracy (PSA) has been widely used for the assessment of precision in the research 
field of land use modelling, which can be described as:  

PSA =
Area𝑐𝑐𝑜𝑜𝑜𝑜
𝐴𝐴𝑟𝑟𝑟𝑟𝑟𝑟𝑎𝑎𝑎𝑎𝑎𝑎

 

Equation 5 

In Equation 5, the PSA of vector CA can be calculated by Areacor and Areaall, the correctly simulated 
and total area of cells. 

Separate experiments are proposed in both the entire and sub-regions of the study area. Therefore, 
CPSA is defined as the mean value of PSA from all experiments:  

CPSA =
∑ 𝑃𝑃𝑃𝑃𝑃𝑃𝑁𝑁𝑁𝑁𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠
𝑖𝑖=1
𝑁𝑁𝑢𝑢𝑚𝑚𝑠𝑠𝑠𝑠𝑠𝑠

 

Equation 6 

where Num𝑠𝑠𝑠𝑠𝑠𝑠  refers to the number of simulation experiments that conducted under each 
combination of CA parameters. 
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Misclassification frequency (MF) 

Except for CPSA, the misclassification frequencies of all simulations, is used to assess the frequency a 
cell has been misclassified across the set of simulations: 

𝑀𝑀𝑀𝑀 =
𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎

 

Equation 7 

where 𝑁𝑁𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and 𝑁𝑁𝑎𝑎𝑎𝑎𝑎𝑎 records the number of incorrectly classified and total simulation counts. 

2.3. Model implementation 

The implementation of both general and partitioned PSO-CAs can be summarized with three steps 
(Figure 1). At the beginning of simulation, the entire study area is divided into two sub-regions 
(administrative boundaries for this research). Sample data, which are required for PSO training, are 
then randomly selected from the spatial datasets. Afterwards, two separate PSOs, which represent 
the sets of general and partitioned transition rules, will be used for training, with the output of weights 
for different driving factors. After the completion of training, the simulated distribution of residential 
cells will be produced by the CA models with general and partitioned rules (general and partitioned 
PSO-CA). Finally, taking the land use map at the end of simulation period as reference, we evaluate 
the accuracy of both general and partitioned CAs. 
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Figure 1: Model implementation procedures 

 

3. Case study 

3.1. Study area and data processing 

Ipswich City is the second oldest local government area (LGA) of Brisbane-South East Queensland 
(SEQ) region. It is located approximately 35 km west of Brisbane, the capital city of Queensland, 
Australia. Two districts within Ipswich: Bellbird Park - Brookwater and Redbank Plains (Figure 2) are 
selected as the study area.  These districts represent the typical trend of land use across Ipswich from 
1999 to 2016. In 2016, the area of these two districts was 3,543.36 ha. The main land uses are 
“Intensive uses”, “Conservation and natural environments” and “Production from natural 
environments”, occupying 55.48%, 20.26% and 19.16% of the study area, respectively. The remainder 
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4.89% and 0.21% of the study area are classified as “Production from dryland agriculture and 
plantations” and “Water”. Polygons of the study area were extracted from the LGA dataset of 
Queensland. This was obtained from QSpatial, a state-owned geospatial portal of Queensland 
(Queensland Government, 2016) which is also the source of the land use maps (1999 and 2016). 

 

Figure 2: The study area is in Ipswich, Queensland, Australia 

Of the land converted to residential by 2016, 92.57% were from secondary land use classes “Grazing 
native vegetation” and “Other minimal use”, "Services (4.65%)" and "Land in transition (2.78%)" are 
the remaining sources. Specifically, the area of “Other minimal use” had been decreased by 450.73 ha 
between 1999 and 2016, representing 61.04% of all reduced land use. Besides, “Grazing native 
vegetation” suffers a 272.31 ha reduction, which is as much as 36.88% of the entire decreased 
category. Two land uses were excluded from the simulation: “Services” lands (mainly Schools and 
education institutions), are managed under local state regional planning (Queensland Government, 
2017), while “Land in transition” refers to the unknown land use. For analysis, “Other minimal use” 
and “Grazing native vegetation” are classified as “non-residential”, while “Intensive uses” is 
considered as “Residential”. Here we focus on the transformation of parcels from non-residential to 
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residential, as this is the most common land use change in such environments (Seto and Shepherd, 
2009; Fragkias et al., 2013). The transformed (from non-residential to residential) and stable (remain 
non-residential during study period) cells are summarized in Table 1. 

 Transformed Stable 

 Count Area (ha) Count Area (ha) 

Bellbird Park - 
Brookwater 2,091 157.25 1,117 798.64 

Redbank Plains 2,137 129.61 1,523 879.80 

Entire study area 4,228 286.86 2,640 1,678.44 

Table 1: The transformed and stable cells of study area during 1999 to 2016 

3.2. Simulation process and result 

Each simulation experiment was run for 100 iterations in order to reproduce the subtle patterns of 
land use change (Cao et al., 2015). In general, one iteration can be summarized as “calculate, select, 
and update”. Calculate: at the beginning of an iteration, the transfer probabilities are calculated and 
assigned to non-residential layer. Select: newly transformed cells, where their attributes are 
converted to residential, are identified from the non-residential layer with relatively high transfer 
probabilities. Update: these selected cells are merged into the residential layer, and used to update 
the non-residential layer before next iteration. The main difference between general and partitioned 
CA is that the non-residential layer in partitioned CA will be updated by the residential layers in 
partitioned sub-regions in order to avoid edge effects on its simulation outputs. 

Two model configurations were applied.  In the first configuration, a single set of transition rules was 
calibrated and applied using the full study area. In the second, two sets of transition rules were 
calibrated, one for each sub-region (Bellbird Park - Brookwater, Redbank Plains). In every experiment, 
20% of the sample cells (including both transformed and stable), which achieved a balance between 
information richness and over-training, were randomly selected to calibrate the transition rules. On 
the basis of initial experiments, along with existing studies on calibration of transition rule (Feng et al., 
2011; Liao et al., 2014), the weight of velocity v, individual and global learning factors c1 and c2 (in 
Equation 3) were set as 1, 1.5 and 1.5, respectively. Similarly, two constants a0 and b0 were both set 
as 1. The initial position and velocity of each particle was generated with random values in the intervals 
[-5, 5] and [-2, 2], and the maximum particle velocity was restricted to 1 to reduce unrealistic results 
due to an extreme velocity. Following Harrison et al. (2019), 1000 iterations were used for PSO training 
to ensure all particles were well-trained. 

Study area Discom Discen Dispub Slope Disroad Dissta Dens Areacell 
Bellbird Park - 

Brookwater -78.61 -80.21 46.22 -14.32 66.48 -4.70 125.64 -36.06 

Redbank Plains -8.88 -36.64 30.00 7.58 -27.39 -7.93 89.87 -22.75 
Entire study area -72.23 -22.94 -2.25 -17.51 35.07 -23.25 165.06 -57.50 

Table 2: Comparison of average weights 



8 
 

According to Table 2, the importance of factors is illustrated by the absolute values of their weights. 
Positive and negative values indicate whether a relatively larger or smaller value makes a greater 
contribution to the conversion from non-residential to residential. Specifically, the population density 
in 2016 (Dens) is the most important factor for the transformation from non-residential to residential 
in sub-regions and the entire study area. Nevertheless, the difference between general and 
partitioned CAs can be observed from the factor of 2nd largest contribution, which is identified as 
distance to district centre (Discen) in two sub-regions, as well as distance to commercial (Discom) in 
entire study area by general transition rules. Similarly, Discom is also the factor with 3rd largest 
contribution in Bellbird Park – Brookwater. Considering this, it is confirmed by the difference of 
weights that heterogeneity existed between sub-regions and entire study area, which leads to a 
further diversity of simulation results in the following. After obtaining the weights of general and 
partitioned CA, all simulation experiments are implemented with 100 iterations. To ensure stability of 
the solutions, 30 separate model runs were applied. 

 

Figure 3: Simulation processes in entire/sub region(s) 

Figure 3 illustrates the simulation processes of residential extension by general and partitioned PSO-
CA. After the completion of 20 iterations, clustered new residential cells have been observed in 



9 
 

southern part of previous residential area (Figure 3A) and along the Augusta Parkway of Bellbird Park 
- Brookwater (Figure 3B). As the simulation progresses, the new residential areas were further 
expanded from the previous time steps (Figures 3C and 3D). At the end of the simulation experiment, 
new residential cells are evident on both sides of State Road 61 and Augusta Parkway, the main roads 
that bisect the sub-regions. The remaining scattered non-residential cells were distributed in western 
and north-eastern parts of Redbank Plains (Figures 3E and 3F). Taking the real land use data as 
reference, the CPSA and MF of all simulation experiments are recorded in Table 3 and Figure 4. 

  Experiment 
Correct 

simulated 
area (ha) 

PSA 
value (%) 

CPSA 
value 
(%) 

Standard 
deviation 

(%) 

General 
PSO-CA 

Bellbird Park 
– Brookwater 

1 123.36 78.45 

79.66 4.67 
2 131.32 83.51 

... 
29 110.91 70.53 
30 122.31 77.78 

Redbank 
Plains 

1 119.46 92.17 

90.45 1.41 
2 116.53 89.91 

… 
29 116.58 89.94 
30 114.00 87.95 

Partitioned 
PSO-CA 

Bellbird Park 
– Brookwater 

1 134.25 85.37 

82.99 1.97 
2 135.66 86.27 

... 
29 129.94 82.63 
30 129.44 82.31 

Redbank 
Plains 

1 106.45 82.13   
2 107.84 83.20 85.44 2.79 

...   
29 111.24 85.53   
30 113.90 87.88   

Table 3: The PSA and CPSA values of sub and entire study areas 
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Figure 4: Ratios of misclassified cells with different frequencies (%) 

* BB: Bellbird Park – Brookwater, RP Redbank Plains 

 

4. Discussion and conclusion 

In this paper, vector PSO-CA models with both general and partitioned transition rules have been 
proposed for the simulation of residential expansion in Ipswich City, Queensland, Australia during 
1999 to 2016. According to the comparison between outputs and reference map, the values of PSA 
and CPSA of two sub-regions are 79.66% and 90.45% by general PSO-CA, as well as 82.99% and 
85.44% in partitioned PSO-CA (Table 3). Specifically, while the difference between maximum and 
minimum PSA values is 25.03% for the general PSO-CA (92.48% and 67.45%), it is 13.07% (90.54% 
and 77.47%) for the partitioned PSO-CA. In addition, standard deviations of the simulation results 
are 4.67% (Bellbird Park – Brookwater, general PSO-CA), 1.41% (Redbank Plains, general PSO-CA), 
1.97% (Bellbird Park – Brookwater, partitioned PSO-CA), and 2.79% (Redbank Plains, partitioned 
PSO-CA). Therefore, it can be concluded that general PSO-CA is more accurate in one sub-region 
while partitioned PSO-CA obtained a higher CPSA in another sub-region. Furthermore, the produced 
PSA values by partitioned PSO-CA are more stable. 

Five levels of misclassification frequency have been selected, corresponding to ranges [1, 6] (Low), [7, 
12] (Medium low), [13, 18] (Medium), [19, 24] (Medium high) and [25, 30] (High). As Figure 4 reveals, 
both general and partitioned PSO-CAs have demonstrated a “drop-rise” trend in misclassification 
frequency. For general PSO-CA, misclassified cells with low frequencies are the largest part, which 
occupied 43.61% and 40.64% in two sub-regions. Besides, 27.44% and 35.42% of the misclassified cells 
belong to high frequency, the second largest group in corresponding districts. The similar trend can 
also be detected in Redbank Plains for which partitioned PSO-CA produced 88.78% and 7.29% 
(Redbank Plains) misclassified cells with low and high frequencies. However, Bellbird Park – 
Brookwater is an exception where the misclassification frequency rates keep decreasing with the rise 
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of frequency level. Overall, general transition rules make relatively spatially concentrated errors while 
the results produced by partitioned transition rules are more diverse, which corresponds to a broader 
range of potential solutions. 

According to this case study, it is confirmed that different simulation results will be generated while 
vector PSO-CA models are integrated with partitioned transition rules. It is difficult to distinguish 
which one is better at this stage: partitioned rules improve the spatial accuracy in one sub-region 
(Bellbird Park – Brookwater) while general rules obtain a more accurate output in another sub-region 
(Redbank Plains). Future work will assess the effects across a broader study region, including the 
integration of both general and partitioned transition rules on a per-subregion basis. 
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