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Abstract 

Timely monitoring and modeling of landuse change is vital to manage land resources 
effectively and to rectify defective land use policies, especially in rapidly urbanizing 
areas. Our research is applied to an annual land use dataset in order to simulate urban 
expansion in a fast developing area, through a hybrid model coupling Artificial Neural 
Networks (ANNs), cellular automata (CA), and Markov Chain (MC). The ANNs were 
optimized to create the urban suitability index (USI) map that was then integrated with 
CA-MC to spatially allocate urban expansion cells. Two ANNs, multiple-layer perceptron 
(MLP) and long short-term memory network (LSTM), were implemented comparatively. 
Since LSTM is able to take into account more temporal information, it outperformed 
MLP in modelling urban expansion process over a short temporal interval. The results, 
validated using kappa and fuzzy kappa simulation, indicate that the integration of ANNs 
with CA-MC can capture the possible nonlinear relationship between urban expansion 
and its drivers, hence it can accurately simulate and predict urban expansion in the study 
area.  

Keywords: urban expansion, artificial neural network, long short-term memory network, 
multiple-layer perceptron, cellular automata, Markov Chain   

1. Introduction 

Since the economic reform in the late 1970s, China has been experiencing a rapid economic 
development and urbanization driven partially by a dramatic increase in urban population  
(DÉMurger et al., 2002; Deng et al., 2008; Zhang et al., 2014; Engelfriet and Koomen, 2017; He et al., 
2017). However, the fast but unsustainable urban development in the past decades has caused many 
pressing issues that became obvious in recent years. The massive and chaotic urban expansion 
caused inefficient and irrational use of limited land resources, polluted the environment, damaged or 
destroyed the sensitive ecosystem, and degraded agricultural and forest land (Jat et al., 2008; Huang 
et al., 2009; Shafizadeh Moghadam and Helbich, 2013 and 2015). Naturally, many researches has 
done  to monitor and model such changes (Sudihar et al., 2004; Liu et al., 2005a; Deng et al., 2009, 
Seto et al., 2011; Jiang et al., 2012). 
       Current urban expansion modeling is limited by a coarse temporal resolution owing to the lack of 
suitable data.  Many of the empirical studies treated  the temporal increment as five-year intervals or 
longer for the urban expansion model, due to the normal life cycle to form a new urban area from an 
existing one (Deng et al., 2009; Ma and Xu, 2010; Shafizadeh Moghadam and Helbich, 2013 and 
2015; Arsanjani et al., 2013). However, this temporal resolution does not allow urban expansion in 
rapidly developing cities to be detected timely, especially in some industrial districts (Seto et al., 
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2011; Xu et al. 2012). Thus, it is impossible to assess unanticipated effects of land use policies 
abruptly promulgated by central and local governments (Zhang et al., 2014; Liu et al., 2015; Zhan et 
al., 2017), let alone remedy the problems arising from them. Therefore, a shorter temporal interval is 
highly desirable in modeling and analysing urban land use change to reveal more frequently updated 
details both spatially and non-spatially, hence to better explain the dynamic process within a rapidly 
growing urban area (Yue et al., 2013). 
        Another issue in urban expansion modeling is the limited predictive ability of individual models. 
In recent years, due to the extensive use of geo-informatic technologies, studies on urban expansion 
have advanced from static descriptions to spatial dynamic simulation modelling. GIS-based models 
with a spatial scope, such as Cellular Automata (CA) (Batty et al. 1999, Li and Yeh 2000, Sudhira et al. 
2004, Aburas et al. 2016), Multi-Agent Model  (Arsanjani et al. 2013b, Zhang at al. 2015), Land 
Transformation Model (Pijanowski et al. 2002) and SLEUTH (Jat et al. 2017), have been used to 
simulate urban expansion processes. They all attempt to capture the complex nonlinear relationship 
between driving factors and urban expansion, via the ‘bottom-up’ model approach and various 
transition rules. Among these models, Cellular Automata with Markov Chain (CA-MC) is found to be 
one of the most frequently used since it can be easily integrated with analytic hierarchy process 
(AHP) and logistic regression (LR) models to create the urban suitability index (USI) map and predict 
the urban expansion demand based on Markov chain (MC). It can also spatially allocate the amount 
of urban land based on CA by taking fewer variables into consideration than other models. However, 
the self-adaptive ability of CA-MC to model the nonlinear relationship between drivers and the 
urban dynamic process is still not completely reliable (Arsanjani et al. 2013, Arbus et al. 2016, Gosh 
et al. 2017).  
        Reliability can be improved by replacing AHP and LR with Artificial Neural Networks (ANNs). 
ANNs have advantages in simulating urban expansion owing to their ability to model complex non-
linear relationships between the dependent and independent variables while involving fewer 
statistical assumptions than LR (Islam et al. 2018,  Hagenauer and Helbich 2012, Pijanowski et al. 
2014). The ‘learning’ power of ANNs enables CA-MC to be self-adaptive, and the automatic 
approximation of non-linear functions by ANNs is especially important when the relationships 
between variables are not known in advance (Paliwal and Kumar 2009). For this reason, ANNs have 
been independently incorporated into other models to simulate and predict urban expansion 
despite the difficulties in properly parameterizing and optimally configuring an ANN model. Xu et al. 
(2019a, 2019b) integrated ANN with CA-MC to simulate and predict urban expansion in the U.S. and 
Auckland, New Zealand. Results from those studies have demonstrated that such innovative 
integration can improve the accuracy of simulation. Therefore, the main objective of this paper is to 
integrate two ANNs into CA-MC for simulating spatiotemporal dynamics of urban expansion in a fast 
developing area and assess the model capability. 

2. Study area and data 

2.1. Study area 

The Liangjiang New District of Chongqing, Southwest China is chosen as the study area because it has 
been experiencing rapid growth since 2009. It comprises three industrial zones (Longxing, Yufu, 
Shuitu), two duty-free ports (an airport and a harbour), plus several counties (Figure 1). 
Characterized by an area of 1172 km², it has been designated as the first hinterland development 
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and a showcase zone for Southwest China. Thus, this district plays a very critical role in the regional 
economic development. It enjoys both local and national incentivized land use policies that, in 
conjunction with the open investment environment and promising future development plan, 
catapulted the district to unprecedented urban expansion, consuming a significant amount of land 
resources. The population of the district was projected to reach 3.5 million within a 350 km² built-up 
urban area by 2020. However, the actual built-up area is expected to surpass the targeted area in a 
short time since the number had already reached 344 km2 in 2014, with an average annual growth 
rate at 7.5%. Thus, further development will have to rely on a more intensive use of the land. 
Therefore, it is very critical to model, allocate, and plan new urban areas judiciously from now on.  

 

Figure 1: Location of the study area, the Liangjiang New District of Chongqing in Southwest China. 
Red lines: boundaries of industrial zones and the duty-free ports; grey lines: county boundaries. 

2.2. Data 

The National Annual Land Use Survey Database was used in this study, in which land use was 
mapped at different levels. The database is updated annually using a land use transformation 
monitoring approach  involving remote sensing and field survey data (Ministry of Land Resource, 
China, 2007). Such an annual database enables land use change to be monitored periodically so as to 
plan urban growth effectively. We simplified the data from the original 25 classes to 9 categories 
(farmland, orchard, forest, grassland, transport, water bodies, bare land, urban land, and other land 
use).  
        In addition, for every grid cell in question during the modelling, its neighbourhood effects in 
different years were also calculated because they would affect the cell status in future years. Other 
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urban expansion drivers, such as distance to existing urban areas, road network, and utilities were 
also considered as independent attributes for every cell during modelling (Table 1). 

Variable Description 

Dynamic variables 

Distance to existed urban Euclidean distance between the target cell and existed urban cell 

Distance to new road Euclidean distance between the target cell and newly built roads 

Cell neighbourhood The proportion of different land use cells within 3x3 Moore 

neighbourhood 

Static variables 

DEM Physical factor, elevation 

Slope Physical factor, slope 

Distance to Motorway Euclidean distance between the target cell and entrance or exit of 

Motorway 

Distance to Arterial Road Euclidean distance between the target cell and arterial road 

distance to urban major road Euclidean distance between the target cell and urban major road 

Distance to urban medium road Euclidean distance between the target cell and urban medium 

road 

Distance to urban small road Euclidean distance between the target cell and urban road 

Distance to school Euclidean distance between the target cell and school 

Distance to transport Euclidean distance between the target cell and bus stop, train 

station, and ferry port 

Distance to hospital Euclidean distance between the target cell and hospital 

Distance to market Euclidean distance between the target cell and market 

Table 1：Variables considering in the modelling 
3. Method 

3.1. Artificial neural networks 

ANNs are widely used modelling techniques with self-adapting, self-organizing, and self-learning 

abilities (Li and Yeh 2002, Park et al. 2011, Berberoğlu et al. 2016). In this study, two ANNs are 
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integrated with CA-MC: MLP and LSTM. The MLP is considered as the most frequently used and 

constructed with the efficient feed-forward, error Back-Propagation Three-Layer Perceptron (BP-

TLP) ANN architecture (Figure 2a). It was adopted to simulate urban expansion owing to its simplicity, 

ease of training, and its abilities for reasonable associative memory and prediction (Rumelhart et al. 

1986). While LSTM is explicitly designed to avoid the long-term dependency problem and has a strong 

focus on temporal (sequential) scale, it can be combined with CA-MC to extract spatial information 

(Lipton, 2015). Instead of feed-forward, it is a recurrent neural network including a delayed input, also 

known as the feedback of output that creates a chain of repeating modules of the neural network 

(Figure 2b). For both ANNs, the most important criteria of their architecture is the number of hidden 

nodes in each hidden layer, which significantly affects ANNs performance (Hagan et al. 1996). Too few 

nodes will cause a significant prediction error, while too many will prolong the training process and lead 

to overfitting. The networks were trained stepwise iteratively with a targeted mean square error (MSE) of 

0.01 between the model output and the real-world data. However, reaching this MSE threshold might 

cause overfitting, which was avoided by setting the number of training epochs to 500, and the maximum 

fail number to 15. These two parameters reduced the possibility of overfitting by early stopping. In 

addition, the training bitch size of LSTM also impacts the final result that it usually set to be an integral 

times of the data time. 

  
  (a)        (b) 

Figure 2: (a) The architecture of MLP (the BP-TLP) ANN adopted in this study. V is the input, Wij 
and Wjk are the connecting weights. (b) The architecture of LSTM. X is the vector input; h is a hidden 
state vector also known as the memory output vector of the LSTM unit; c is the cell state vector, б and 
tanh are the activation functions.  

3.2. ANNs Markov Chain – Cellular Automata 

The Markov Chain (MC) model determines the expected amount of non-urban land transition to 
urban use in  future urban expansion. It calculates the land use change process through the 

 
 layer  

point-wise operator copy 
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transitions of different land use types at a temporal interval of one year. Two results are generated 
from MC: a transition area matrix, which shows the absolute amount of change from different non-
urban land uses to urban land, and a transition possibility matrix, which reveals the likelihood of the 
transition. 
        CA uses the current cell status and the cell’s neighbourhoods to predict the future cell status, as 
expressed in Equation 1: 

S t+1 = f (S t, N, R)                                                            Equation 1 

      In which St+1 and St denote the cell state at time t and t+1, respectively; N is the effect of a cell’s 
neighbourhood; R is the transition rule; and f is the state transition function. For regular MC-CA, R is 
the transition possibility matrix produced from MC, which shows only the numeric results from two 
land use datasets without any information on the spatial distribution of the modelled changes. This 
problem is solved by using the USI map generated from MLP (Equation 2) and LSTM (Equation 3). 

USI_MLP = fMLP (V1, V2, … , Vi) ∏C                                        Equation 2 

Where fMLP is the activation function of ANNs; Vi is the ith input variable, and C represents the 
constraint with a binary value of 0 or 1. 

                                   USI_LSTMt = ft*USI_LSTMt-1 + it *St                                                             Equation 3 

Where ft is the forget function of LSTM; it is the scaling down function for input variables and 
cell state St, it is usually sigmod or tahn. 

Hence, the final state (urbanized or not) of cellij in this ANN-CA-MC will be represented as 
Equation 4: 

                                  St+1ij = fca (Stij, At+1, USIann, Nmultiple)                                 Equation 4 
        Where At+1 is the expected amount of expansion predicted by MC, and USIann is the USI 
generated from either the MLP or LSTM network, and Nmultiple represents different land use 
neighbourhood effects at cell (i, j) (i - row, j - column). The CA transition rules are now the 
combination of USI and N.  

3.3. Model implementation 

Figure 3 illustrates the detailed steps of how to integrate these two machine learning based ANNs 
with CA-MC to model the urban expansion. Annual land use data and spatial data such as DEM, 
slope, road network, and facility locations (Table 1) were collected to create a geodatabase in the 
GIS environment, from which the urban expansion areas and related driving factor values were 
extracted. Afterwards, both changed and unchanged cell samples were selected using the maximum 
dissimilarity distance algorithm (MDDA) or random sampling. The selected samples were used to 
train MLP and LSTM and to create the USI map. Also the annual land use data were fed to CA-MC to 
predict the expected amount of urban expansion. The ANN-CA-MC simulated the urban expansion at 
a certain time from the expected amount of expansion and the USI map output from either MLP or 
LSTM, taking into account the multiple neighbourhood land use effect. The output model results 
were validated against the actual land use data using kappa simulation. Only when the modelled 
results passed the validation process was the properly configured and trained model then used to 
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predict future urban expansion that can provide convincing information for modifying land use 
policies and plans. 

 

Figure 3. Flowchart of the ANN-CA-MC method in modelling urban expansion in Liangjiang District 
of Chongqing, China. 

4. Result and discussion 

4.1. Urban suitability index map 

In the USI map (Figure 4) output from the ANN, the suitability of non-urban cells for urban expansion 
was graded from 0 (low) to 1 (high), coloured from green to red. This range was categorized into five 
classes (very high, high, moderate, low, and very low) using an equal interval to show the spatial 
distribution of these cells (Table 2). Based on the results from MLP (Figure 4A, 4B), we can see that 
the great majority of non-urban areas in the Liangjiang New District is not suitable for urban 
development as approximately over 75% of the cells have a suitability index <0.2. Cells having a 
suitability >0.6 are relatively small in quantity (approximately over 8%). They are located either close 
to or inside existing urban areas, confirming the “organic urban growth mode” with possible 
compact development (e.g., as infilling and edge development), all of which were accurately 
modelled by the MLP-based ANN. The most likely hotspots of future urban expansion are distributed 

Land use annual data 
(2009 - 2014)  Auxiliary data  

Geo Data 
CA-MC 

Prediction  
ANNs  

(MLP and LSTM) 

Constraint layers 

  

USI 

Validation 
Annual urban expansion 

  

Yes No 

Neighboring 
land use   
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in the industrial development zones, as well as next to the developed counties. The medium 
suitability value indicates possible future urban expansion. Both maps show that Longxing and 
Shichuan counties (top right) having this value are the next potential areas to be urbanized. However, 
both the quantity and spatial pattern of the USI from LSTM are different to those of the MLP 
network. Over 95% of these non-urban cells are predicted to have a very low likelihood of 
urbanisation in the future, while only 2.6% of them have a USI > 0.6, much lower than that number 
of the MLP. In addition, only  a very small amount of non-urban cells has a medium USI value (0.2 – 
0.6) with  less than 0.5% of this area predicted to be transitioned to urban uses based on the LSTM. 
The spatial patterns of high USI with the LSTM are still close to existing urban cells but more 
dispersed, with a large amount of high USI cells only distributed in the three industrial zones, and 
very few outside their boundaries (Figure 4C). This zonal based distribution shows that the LSTM has 
the ability to capture the land use plan information through the temporal learning process. 

 

Figure 4: USI map of the study area from ANNs. (A) MLP with random sampling; (B) MLP with 
MDA sampling; and (C) LSTM. 

Range ≥  0.8 0.8 - 0.6 0.6 – 0.4 0.4-0.2 < 0.2 

MLP-Random 31.27 / 3.9% 38.11 / 4.8% 47.94 / 6.0% 79.38 / 10% 596.38 / 75.3% 
MLP-MDDA 28.65 / 3.6% 33.92 / 4.3% 44.98 / 5.7% 73.30 / 9.2% 612.23 / 77.2% 
LSTM 19.27 / 2.4% 1.54  /  0.2% 0.87  /  0.1% 2.43  /  0.3% 769.00 / 96.9% 

Table 2: Proportion of areas at five ranges of USI value predicted with three methods. (Unit: km2) 

km 
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4.2. Model validation and comparison 

For the purposes of validation, the integrated ANNs-CA-MC model was used to simulate urban 
expansion in 2014 based on the annual land cover change from 2009 to 2013, and the validated 
modelling results are shown in Table 3. MC analysis yielded an expected urban expansion by 46.3 
km2 in 2016, against the actually expanded area of 48.78 km2, leading to a maximum simulation 
accuracy of 95%. All the models have a high degree of local agreement (kappa > 80%) between the 
modelled and the reference urban area, which indicates that both MLP (regardless of the sampling 
method, either random or MDDA) and LSTM can simulate the urban area in 2014 precisely. Judged 
against (fuzzy) kappa simulation that takes transition/change into account and that corrects the 
agreement between two maps for the size of class changes and compares the variations instead of 
the status of the land cover (van Vliet et al. 2011), LR has the lowest values indicating its weakest 
ability to model nonlinear relationship among all the algorithms. LSTM has the highest validation 
values among the models, and thus the most accurately modelled results because of its capability to 
learn with a short time interval, which is important in modelling fast growing urban areas. 

Method Kappa Kappa simulation Fuzzy kappa 
simulation 

LR 0.818 0.27 0.51 
MLP-Random 0.829 0.36 0.64 
MLP-MDDA 0.827 0.32 0.53 

LSTM 0.857 0.48 0.70 

Table 3: Validation results of (fuzzy) kappa simulation of four types of models. 

The same model was applied to southern Auckland, New Zealand, using a similar set of geodata. 
All the model validation values are higher in Auckland than in the Liangjiang New District. With 
southern Auckland, the ANN-CA-MC could simulate the urban expansion with a very high kappa 
(0.94) and acceptable kappa simulation (>0.50), demonstrating that both the urban pattern and 
urban expansion can be modeled at a high certainty level (Xu et al. 2019b). However, in the 
Liangjiang New District, China, the model is less accurate. The validation results, though still 
considered acceptable, are not as good as with Auckland. The kappa was only slightly higher than 0.8 
and the kappa simulation of MLP was even below the medium level (0.4 -0.6), and 0.48 of LSTM. 
They suggest that we could still locate the major urban areas (kappa) within the study area, but it is 
less accurate to simulate the changes of urban areas (kappa simulation). The most significant reason 
for this discrepancy is the role of land use policies and plan in the simulation that were not taken 
into account in the model, an issue that  has also been identified by other researchers (Deng 2011, 
Fu et al. 2012, and Fu 2017). The aforementioned Liangjiang New District plays a very important role 
in the national development strategy of China, where urbanization needs to be fast paced and most 
of the new urban areas are pre-designated and planned by governments at both the local and 
national levels. Many policies and rules were used to restrict the location and distribution of future 
urban areas. Therefore, the urban expansion mode under government directions and guidance is 
much more complex, the location of urban areas is more definitive, and their spatial distribution is 
more dispersed, all those added difficulties to simulate and predict their future patterns. Another 
possible reason to explain the less accurate modelled results is the quality of data supplied to the 
model. For Auckland, urban information was extracted from aerial photos with a very high spatial 
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resolution (0.5m), but it decreased to 30m for the Liangjiang New District. In addition, the precision 
of auxiliary data, such as DEM, had been degraded deliberately before they were released for public 
access from overseas. 

5. Conclusion 

In this study, we built two ANN-based CA-MC to model the urban expansion inside the Liangjiang 
New District. The obtained results demonstrate the possibility of using machine learning, such as 
ANNs, to improve the capability of CA-MC simulation of urban expansion. The ANNs-CA-MC 
outperformed LR-CA-MC with higher kappa and kappa simulation values. In simulation, the most 
important layer, USI map, can be efficiently created by MLP or LSTM, and it provides critical 
information on potential future urban areas. LSTM is more powerful at capturing temporal 
information, hence is more reliable than other two MLP CA-MC models with different sampling 
methods in simulating fast annual urban expansion process for the study area. Overall, the proposed 
modelling approaches can be used to yield relevant and useful information for urban planners and 
local government decision makers. However, the simulation results of the Liangjiang New District are 
not as good as in other urban areas, even with the same model and similar dataset. Unlike the urban 
class patterns, the changes cannot be well simulated possibly because the important role of land use 
policies from different levels of governments in urban development was not considered in the 
modelling. The effects of the government directed land use directives were randomly distributed 
land use patterns with an ambiguous expansion mode or trend that is very difficult to model and 
predict. Therefore, an integrated model is still needed to overcome the limitation in simulating 
human behaviour / policies at different scopes. In future research, multi-scenario modelling should 
be attempted to address the prediction uncertainty related to land use policies more appropriately 
(Arsanjani et al. 2013a, Shafizadeh Moghadam and Helbich 2013, Mustafa et al. 2017). In addition, 
socioeconomic factors, such as population density, income, and GDP, should also be considered to 
produce more reliable modelling outcome in future.   
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----------------------- REVIEW 1 --------------------- 
SUBMISSION: 3 
TITLE: Coupling Machine Learning and Cellular Automata-Markov Chain to Model Urban 
Expansion in a Fast Developing Area: A Case Study of Liangjiang New District of 
Chongqing, China 
AUTHORS: Tingting Xu, Jay Gao and Giovanni Coco 
 
----------- Overall evaluation ----------- 
SCORE: 1 (accept) 
----- TEXT: 
An interesting paper and relevant to the conference.  Some comments below.  
 
Check capitalisation of "environment" in address  
 
"much research has gone"? 
 
"from existing one" -> "from an existing one" 
 
Fig 2b.  "pointwize" 
 
"Only when the modelled results passed the validation process, the properly 
configured and trained model was then used"  
-> "Only when the modelled results passed the validation process was the properly 
configured and trained model then used" 
 
Fig 4.  Scale bar should be in "km", not "KM".  Remove scale text as it is unlikely to be 
correct after insertion of map into the document. 
 
Table 3. Caption should be on same page as the table.   
 
Rephrase: "causing it very difficult to model" 

 

All these pointed out problems have been addressed with the revised file. 
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----------------------- REVIEW 2 --------------------- 
SUBMISSION: 3 
TITLE: Coupling Machine Learning and Cellular Automata-Markov Chain to Model Urban 
Expansion in a Fast Developing Area: A Case Study of Liangjiang New District of 
Chongqing, China 
AUTHORS: Tingting Xu, Jay Gao and Giovanni Coco 
 
----------- Overall evaluation ----------- 
SCORE: 1 (accept) 
----- TEXT: 
Interesting combination of CA and ANNs for modeling urban expansion.  
Yet, the novelty and aim of the study could be formulated in a crispier way.  
 
The initialism MC needs to be defined in the paper  

Done 
 

I am not too familiar with the USI but how can reliability be improved by replacing 
AHP and LR by ANNs? 

A comparison study with these three models was done with a paper – “Simulation of urban 
expansion via integrating artificial neural network with Markov chain – cellular automata” (Xu 
et al., 2019) and revealed that it is quite reliable to use ANNs rather than AHP and LR in 
urban expansion model due to its capability to simulate the non-linear relationship. 

Figure 2. what is pointwize op?  

Revised it as “point wize” 

 
Would it be possible to briefly describe the criteria used to define the architecture of 
the ANNs? 

Due to the word limitation, we can only add some briefly descriptions. However, we can 
extent this part with more details if it is going to be published. 

 
Table 3. caption and table are in different pages. can this be fixed? 
Fixed. 

 

Finally, please double check that the layout of your paper matches the one used in the 
provided template. 

Thanks for the suggestion, we have double checked the format and now it matches the 
template.  
 


