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Abstract 

Urban black holes and volcanoes are typical traffic anomalies in cities. The discovery of 

urban black holes and volcanoes has played an important role in urban planning and public 

safety. It is still challenging to detect arbitrarily shaped urban black holes and volcanoes 

considering the network constraints with less prior knowledge. In this study, a network-

constrained bivariate clustering method is proposed to detect statistically significant urban 

black holes and volcanoes with irregular shapes. First, an edge-expansion strategy is used 

to construct the network-constrained neighbourhoods without the time-consuming 

calculation of the network distance between each pair of objects. Then, a network-

constrained spatial scan statistic is constructed to identify candidate sub-areas of urban 

black holes and volcanoes, which are then combined to form arbitrarily shaped urban black 

holes and volcanoes based on the multidirectional optimization method. Finally, the 

statistical significance of each detected urban black hole and volcano is evaluated using 

Monte Carlo simulation. The simulations demonstrate that proposed method is more 

effective and stable than the three state-of-the-art methods in detecting urban black holes 

and volcanoes. The empirical analysis of the Beijing taxicab spatial trajectory data also 

shows that the proposed method is useful for detecting the spatiotemporal variations of 

traffic anomalies.  
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1. Introduction 

An urban black hole is defined as a subgraph of the road network whose overall inflow is significantly 

greater than the overall outflow during a certain time interval. In contrast, an urban volcano is defined 

as a subgraph of the road network whose overall outflow is significantly greater than the overall inflow 

during a certain time interval (Hong et al., 2015). Urban black holes and volcanoes usually reflect 

disasters, catastrophic accidents, and traffic congestion in the city. The detection of urban black holes 

and volcanoes helps to maintain public safety and optimize urban planning.  

In the era of big data, the massive spatial trajectory data can be used to represent the traffic flow in a 

city, and inflow and outflow in a region can be calculated by using the origin and destination points 

recorded in the trajectories (Zheng, 2015). Urban black holes and volcanoes can be defined as bivariate 

clusters, i.e., groups containing the origin and destination points, and forming hot and cold spots. 

Although many spatial clustering methods are currently available, most of them are only designed for 

detecting clusters from a univariate spatial point process (Grubesic et al., 2014). Only a few methods 

can be used to detect blackholes and volcanoes, e.g. graph clustering (Li et al., 2012; Hong et al., 2015) 

and spatial point clustering (Kulldorff, 1997; Pei et al., 2015). However, there is no method that 

considers the network-constrained spatial trajectory data and the statistically significant urban 
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blackholes and volcanoes with arbitrary shapes. To overcome this limitation, a network-constrained 

bivariate clustering method is developed in this study.  

2. The network-constrained bivariate clustering method 

2.1 An edge-expansion method for searching network-constrained neighbours 

The spatial trajectory data is first matched onto the corresponding edges of a road network using the 

map-matching method. If e is the nearest edge of point pi, Diststart represents the distance between pi 

and the start node of e, and Distend represents the distance between pi and the end node of e. Then, for a 

given point pi and radius of the neighbourhood eps, the network-constrained neighbourhood of pi 

(NNeps(pi)) can be identified in three steps.  

Step 1: Find the edge e where pi is located on; if Diststart ≥ eps and Distend ≥ eps,  

 obsjjiEjieps ppeps,p,pdppNN = )()( , where dE(pi, pj) represents the Euclidean distance 

between pi and pj, Pobs is the set of points matched onto e, else go to Step 2; 

Step 2: Search neighbouring edges of pi: 

◼ If Diststart<eps and Distend≥eps, search all possible paths P from the start node of e until the 

cumulative length of the edges of each path is equal to or larger than eps.  

◼ If Diststart≥eps and Distend<eps, search all possible paths P from the end node of e until the 

cumulative length of the edges of each path is equal to or larger than eps.  

◼ If Diststart<eps and Distend<eps, search all possible paths P from the nodes of e until the cumulative 

length of the edges of each path is equal to or larger than eps.  

Step 3: Identify network-constrained neighbours of pi: for each path pathi in P, each object pj on pathi 

will be added to NNeps(pi) if dp(pi, pj)≤eps, where dp(pi, pj) represents the distance between pi and pj on 

the path. 

The complexity of the edge expansion method is approximately linear.  

2.2 Test statistic for the detection of urban black holes and volcanoes 

The null hypothesis is that there are no urban black holes or volcanoes within the study area: 
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O qpandqp  , the edges in r may form an urban volcano. For region r, the Bernoulli-based 

log-likelihood ratio test statistic (Kulldorff, 1997) can be used to detect urban black holes and volcanoes. 

Monte Carlo simulation is used to test whether NNeps(pi) is a subarea of an urban black hole or volcano. 

The points are randomly generated on the road network following complete spatial randomness R times, 

and the p-value of NNeps(pi) is calculated as: 
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where I is an indicator function that takes the value of 1 if the statement is true, and the value of 0 if the 

statement is false. obs

epsλlog  and j

epsλlog are the test statistics calculated based on the observed and random 

points in NNeps(pi). Given a significance level α, for each point pi whose p-value is smaller than α, if the 

number of destination points is larger than that of origin points in NNeps(pi), then NNeps(pi) will be 

identified as a subarea of an urban black hole, else NNeps(pi) will be identified as a subarea of an urban 

volcano. 

2.3 Discovery of arbitrarily shaped urban black holes and volcanoes 

Because the construction of arbitrarily shaped urban black holes and volcanoes is the same, we only 

take the construction of urban black holes as an example to introduce the multidirectional optimization 

method.  

Step 1: Start from an unvisited point pi whose neighbourhood NNeps(pi) is a subarea of an urban black 

hole and select NNeps(pi) as the seed of the urban black hole. 

Step 2: Identify all the subareas overlapped with NNeps(pi) and sort these subareas in descending order 

based on their log-likelihood ratio test statistic values, represented as Aoverlap=[NNeps(p1), 

NNeps(p2),…, NNeps(pmax)]. 

Step 3: Combine the first subarea NNeps(p1) in Aoverlap with NNeps(pi); if the log-likelihood ratio test 

statistic value of the newly-built urban black hole decreases compared to the value of the urban 

black hole detected in the previous step, then NNeps(pi) is identified as an urban black hole and 

then go to Step 1; else, NNeps(p1) and NNeps(pi) are combined to form a new urban black hole, and 

other subareas in Aoverlap are sequentially combined with NNeps(pi) using the same procedure until 

the log-likelihood ratio test statistic value of the newly-built urban black hole decreases compared 

to the value of the urban black hole detected in the previous step. 

Step 4: Select the new urban black hole detected in Step 3 as the new seed, go to Step 2. The iterative 

procedure stops when the log-likelihood ratio test statistic value of the newly-built urban black 

hole decreases compared to the value of the urban black hole detected in the previous step. 

Step 5: Iteratively implement Step 1 to Step 4 until all the points have been visited. A number of 

overlapped urban black holes will be obtained. 

Step 6: Find the urban black hole with the highest log-likelihood ratio test statistic value UBmax and 

delete all the urban black holes overlapped with UBmax. 

Step 7: Repeat Step 6 until no overlapping urban black holes occurs. 

Step 8: Evaluate the statistical significance of detected urban black holes by using the method 

introduced in Section 2.2. The false discovery rate approach (Benjamini and Yekutieli 2001) was 

used to solve the multiple and dependent testing problem. 

3. Experimental analysis 

Six groups of simulated datasets that contain 5, 8, 11, 14, 17, and 20 urban black holes and volcanoes 

were generated on a real road network in Beijing. In each group, ten datasets with the same number of 

urban black holes and volcanoes were generated. The proposed method was compared with three state-

of-the- art methods, i.e., the spatiotemporal graph (STG)-based method (Hong et al., 2015), network-

constrained spatial scan statistic (Shiode, 2011), and two-component DBSCAN (Pei et al., 2015). The 

performance of different methods was quantitatively evaluated using precision, recall, and F-measure. 

The results are shown in Figure 1. It can be found that the mean values of precision, recall, and F-
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measure usually exceed 0.9; therefore the urban black holes and volcanoes discovered by the proposed 

method are indeed the most accurate and complete. 

 
(a)The mean value of precision                                     (b) The variance of precision 

 
(c) The mean value of recall                                          (d) The variance of recall 

 
(e) The mean value of F-Measure                                 (f) The variance of F-Measure 

Figure 1. Performance of the four methods on simulated 

The proposed network-constrained bivariate clustering method was further applied to detect urban 

black holes and volcanoes from the taxi GPS trajectory data generated by approximately 30,000 taxis 

from May 23 to 29, 2016 in Beijing, China. From the mining results, we found that : 

(i) Most urban black holes and volcanoes were detected during the rush hour and at night, and urban 

black holes and volcanoes always occur near the train stations. 



5 
 

(ii) Urban black holes and volcanoes discovered on the weekdays and weekends are different. The 

commuting patterns of Beijing residents can be well revealed from the mining results. 

(iii) The mixed urban functions in some commercial areas do not relieve the traffic anomalies in Beijing 

because people who work in these areas usually do not live there due to the high housing prices. 

4. Conclusion 

The experimental results on simulated datasets show that the urban black holes and volcanoes detected 

by the proposed bivariate clustering method are more accurate and complete than those detected by 

existing methods. The case study on Beijing taxi trajectory data show that the proposed bivariate 

clustering method is able to describe the detailed traffic anomaly patterns. The mining results provide 

a new insight into traffic anomaly patterns, and will be useful for understanding the characteristics of 

urban traffic operation and optimizing urban planning. 
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