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Abstract 

It is established that socio-economic and demographic dissimilarities between populations 

are determinants of spatial segregation. However, the understanding of how such 

dissimilarities translate into actual segregation is limited. We propose a novel network-

analysis approach to comprehensively study the determinants of communicative and 

mobility-related spatial segregation, using geo-tagged Twitter data. Weighted spatial 

networks representing tie strength between geographical areas are constructed, followed by 

tie formation modelling as a function of socio-economic and demographic dissimilarity 

between areas. Physical and virtual tie formation were affected by income, age and race 

differences, although these effects were smaller by an order of magnitude than the distance 

effect. Tie formation was more frequent when ‘destination’ area had higher median income 

and lower median age. We hypothesise that physical tie formation is more ‘costly’ than a 

virtual one, resulting in stronger segregation in the physical world. Economic and cultural 

motives may result in stronger segregation of relatively rich and young populations from 

their surroundings. Our methodology can help identify types of states that lead to spatial 

segregation, and thus guide planning decisions for reducing its adverse effects. 

Keywords: followers, mobility, network, spatial segregation, Twitter. 

 

1. Introduction 

There is, at present, an explosion of interest in social network analysis, primarily thanks to the advent 

of large online data sources on large social groups (Barabási, 2011). In particular, Location-Based Social 

Networks (LBSN), such as Twitter, provide opportunities to study spatial dimensions of human 

behaviour in detail (Ma et al., 2017).  

Segregation is the extent to which individuals of different groups occupy or experience different 

social-environments. Groups generally form distinct patterns of over- and under-representation 

across residential regions (Brown and Chung, 2006).  

The most commonly used measure of spatial segregation is the Index of Dissimilarity (ID) (Duncan and 

Duncan, 1955), that quantifies the evenness with which two demographic groups are distributed 

between areal units. Massey and Denton (1988) further identified five dimensions of segregation: 

unevenness, exposure, clustering, concentration, and centralisation. Of these, unevenness and 

clustering are regarded as the most important (Oka and Wong, 2014; Reardon and O’Sullivan, 2004).  
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Studies of spatial segregation are mostly focused on measuring population distribution patterns in 

residential space, based on census data (Dwyer, 2007)—ignoring the fact that social isolation likely 

extends from residential place to other locations and to other dimensions of activity (Krivo et al. 2013). 

Recently, it has been recognised that segregation studies should go beyond residential place to daily 

activity space (Li and Wang, 2017), and shift from location-based to people-based analysis (Kwan, 

2013). The degree of mobility and communication between areas of contrasting socio-economic 

background are important aspects of the formation and maintenance of spatial segregation (Paola, 

2007). In reference to LBSN, these two complementary components (Croitoru et al., 2015) are thought 

to be the strength of physical / mobility ties and of friendship / virtual ties, respectively.  

Studies of population-level socio-economic and demographic (SD) predictors of tie formation have 

either leaned towards an exploratory analysis of spatial patterns in specific case-studies (Huang and 

Wong, 2016), or have over-simplified the representation of physical space (De Choudhury, 2011). 

Recently, Ma et al. (2017) spatially analysed a large-scale friendship tie network between users. 

Aggregating social ties between users, the authors created both location-location and city-city spatial 

networks, to reveal tie counts across the entire area of the continental US. In the present study, we 

take the next step and quantitatively evaluate these ‘characteristics of place’ in terms of their effect 

on follower and mobility ties. Accounting for distance and population size, we focus on the effects of 

SD characteristics due to spatial segregation, as reflected through the recorded behaviour of Twitter 

users.  

A more comprehensive understanding of network tie formation determinants can shed new light on 

patterns of spatial segregation in the various activity dimensions of human society—which is 

commonly recognised as the next frontier in studying segregation (Wissink et al., 2016). We propose 

a comprehensive hypothesis-testing oriented methodology that operates on a large sample of regions 

covering a wide and heterogeneous spatial extent, using two tie metrics that represent both mobility 

and friendship, while bearing in mind SD ‘characteristics of place’ (income, age and race). Our aim is 

to study how dissimilarity in population characteristics translates into segregation – in terms of 

mobility and friendship – between the geographical areas these populations occupy.  

The study aim is achieved using three operational objectives:  

(1) To construct four weighted networks that represent physical and virtual tie strength on 

two distinct spatial scales, based on geo-referenced Twitter data, and a fifth survey-based 

commute network used for validation.  

(2) Fitting models where tie strength between given areas in the latter five networks is 

explained with their distance, SD dissimilarity and their interactions. 

(3) Using a model selection procedure to determine which factors substantially affect tie 

formation, their effect size and effect direction, concerning each tie type (physical and 

virtual) and on each spatial scale. 

Our specific hypotheses are: 

(1) Spatial segregation exists in both physical and virtual dimensions – although it may be 

weaker in the virtual dimension, due to lower tie formation costs.  

(2) Racial dissimilarity enhances spatial segregation, due to the homophily principle 

(McPherson et al., 2001).  
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(3) Income and age differences induce asymmetric segregation due to the unbalanced 

motivation that dissimilar populations – such as the rich and poor – have for maintaining 

contact with each other (Wissink and Hazelzet, 2016). 

2. Methods 

2.1. Twitter Data 

The Streaming API was used to continuously collect text contents and metadata of all geo-referenced 

tweets falling within the study areas. The REST API was subsequently used to collect the list of users 

that each user follows (otherwise known as their ‘friends’). The analysed dataset consisted of point 

locations (lon-lat) that each unique user posted from, coupled with an indication on whether or not a 

social tie exists between each pair of users.  

Although geo-tagged tweets comprise only 1–2% of the total volume (Lovelace et al., 2016), thanks to 

the relatively prolonged collection period we were able to collect a large sample size of over 20M 

tweets sent by ~900K unique users (Table 1), that can serve as a good approximation of human 

activities for study purposes (Ma et al., 2017). 

The process was repeated on two spatial scales: 

(1) County scale, the contiguous United States (US) (~8,000,000 km2) 

(2) Census tract scale, a rectangular area of ~50,000 km2 in the Greater Boston Area (GBA) 

Although the GBA is contained within the US, a separate collection process was conducted, to achieve 

a more detailed sampling of tweets, given API rate limit considerations. 

2.2. Socio-economic and demographic (SD) data 

We worked on two spatial scales: county, and census tract. To this end, we used the American 

Community Survey (ACS) 5-Year Estimates (2010-2014) data for obtaining SD data for the studied areas 

at each spatial scale (Almquist, 2010). Three key characteristics (Nguyen et al., 2016) were extracted: 

median household income (ACS code: B19013e1), median age (B01002e1), and total population of 

each racial/ethnic group (B02001e2, B02001e3, B02001e4, B02001e5, B02001e6, B02001e7) (see 

Table S1 and Fig. S1-S6 in Supplemental Materials).  

Dissimilarity between each pairs of areas was expressed as Euclidian distance. For racial composition, 

multi-dimensional dissimilarity was calculated by means of the function dist in R, using 

method="euclidean", after converting racial/ethnic population from counts to proportions, to 

remove the effect of total population size. Note that multi-dimensional dissimilarity is not directional, 

as it only expresses the absolute degree of compositional difference between origin and destination 

areas.  

2.3. Commute data 

To validate the results obtained using Twitter, we reproduced the analysis of socio-economic effects 

on mobility realisation through an external data source – the 2009-2013 5-Year ACS Commuting Flows 
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dataset1. This dataset contains counts of workers in commuting flows between each pair of counties 

in the USA (Nelson and Rae, 2016). To standardise the number of commuters by potential commuters 

count, we also obtained the county-level labour force estimates (B23025e4) from the ACS dataset 

(Table S1). 

2.4. Network construction 

Twitter network data were aggregated from individual-user scale to areal scale – since estimates of 

SD characteristics are only available in the latter case.  

Aggregation involved the following steps:  

(1) Assigning each Twitter user to the areal unit where he/she is most active, which we labelled 

his/her centre of activity—defined as the areal unit with the greatest number of tweets for a 

given user (Ma et al., 2017). One of the reasons for this broad definition, rather than 

attempting to detect a place of residence (Huang and Wong, 2016; Huang et al., 2014), is that 

Twitter accounts for organisations, agencies, services, etc., rather than individuals, are 

increasingly more common (Senaratne et al., 2017), and for such users, the term place of 

residence is naturally irrelevant. Nonetheless, these users are still relevant in terms of virtual 

and physical ties within the online community on Twitter, as they reflect the flow of 

information and levels of mutual interest between different spatial areas.  

(2) Calculating virtual and physical tie strength metrics between all possible pairs of areal units A 

and B in the study area, in accordance with the following algorithms for each tie type - 

1. Follower = The number of follower ties between a user from area A and one from area B, 

divided by the number of potential ties—i.e., the number of unique users from area A 

multiplied by the number of unique users from area B (Figure 1).  

2. Mobility = The number of users from area A who have sent at least one tweet when 

physically located in area B, divided by the number of potential ties—i.e., the number of 

unique users in area A. 

3. Commute = The commuting flow count from area A to area B, divided by total labour force 

in area A. 

(3) Assigning each pair of areas A and B with the distance between their centroids, as well as the 

corresponding set of SD dissimilarity metrics (see above). 

(4) Repeating steps 1–3 for the two spatial scales—namely, for the census tract scale in the GBA 

(Figure 2) and for the county scale in the US (Figure S7).  

Note that the tie strength indices are directional—i.e., tie strength for A→B is not necessarily the same 

as tie strength for B→A. Self-ties where the origin and destination are the same (e.g., A→A) were 

                                                           

1  https://www.census.gov/data/tables/time-series/demo/commuting/commuting-flows.html 
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excluded from analysis. Also note that the tie strength indices are inherently standardised by total 

network activity for removing group size bias (Lengyel et al., 2015). 

2.5. Statistical analysis 

A preliminary visual evaluation of distance effect on network tie strength was conducted by fitting a 

Generalized Additive Model (GAM) to each of the four Twitter-based networks (two spatial scales × 

two tie types) (Figure 3). The dependent variable was the tie strength estimate (Figure 1), while the 

independent variable was the distance between the respective areas. The observations comprised all 

network edges—i.e., all ties between pairs of areas.  

The main statistical approach follows section 9.2–Modeling Network Flows: Gravity Models in Kolaczyk 

and Csárdi (2014) (pp. 162-170). The input data for the statistical analysis comprised the five weighed 

networks: Twitter-derived networks for two spatial scales × two tie types + the US commute network. 

In the main analysis, we considered not only distance, but also SD dissimilarity, and the interactions 

of SD dissimilarity with distance. In each case, we statistically tested whether realisation of follower 

or mobility ties was associated with the latter variables, and if so – how.  

Generalized Linear Models (GLM) with binomial response (i.e. ‘logistic regression’) were used, since 

the dependent variables consisted of proportional data. Thus, the dependent variables were ‘success’ 

vs. ‘failure’ counts – i.e.,the ratio between actual and potential network ties (Figure 1). The 

independent variables were: distance; median income arithmetic difference; median age arithmetic 

difference; and racial composition multivariate Euclidean distance; as well as the interaction of 

geographical distance with these three SD variables.  

We found no multicollinearity between the four examined variables on the network edges – i.e., 

distance and dissimilarity of income, age and racial composition. Although spatial autocorrelation 

between network edges is not clearly defined, and pairwise neighbour weighting is computationally 

unfeasible for sample sizes of 3,097,600 or 9,659,664 edges (Table 2), we ran preliminary evaluations 

on a sample of randomly chosen 10,000 edges in the GBA. We used Moran’s I global test for 

autocorrelation (Bivand et al., 2013), with the 8-nearest-neighbours edge centroid criterion for 

defining neighbour weights. There was no significant autocorrelation in the follower network (p-value 

= 0.53), or in the mobility network (p-value = 0.21).  

A model selection procedure – based on the Akaike Information Criterion (AIC) – was conducted, to 

evaluate the relative support for the full model and all simplified models lacking one or more of the 

predictors, in each of the four networks (Table 3). In each case, models were ordered by the AIC score 

– from lowest AIC (i.e., highest relative support) to highest (i.e., lowest relative support). The 

hypotheses underpinning the inclusion of variables present in the most parsimonious models (i.e. 

having the lowest AIC) were considered supported by the data (Johnson and Omland, 2004). The five 

most parsimonious models were eventually used to generate and visualise predicted tie strength in 

the studied parameter space (Figure 4), to characterise effect sizes and directions. We also calculated 

Akaike weights (AICw), which express relative weight of evidence for each model, summing to 1 across 

all models (Table 3). An AICw value for model i can be interpreted as the probability that model i is the 

best model for the observed data, given the candidate set of models (Johnson & Omland 2004).  
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Model predictions were calculated using non-standardised GLM model coefficients, thus allowing for 

interpretation in the original units for each variables (e.g. ‘kilometres’ for distance, or $ for income 

difference) (Figure 4). In addition, Table 3 reports the standardised model coefficients. Standardised 

regression coefficients basically refer to how many standard deviations a dependent variable will 

change per standard deviation increase in the predictor variable. Standardised coefficients are 

therefore useful when numerically comparing effect sizes between variables in the same model, or 

among different models based on the same data. 

2.6. Software 

Accessing the Twitter APIs for data collection was done by means the Python package twarc2. All other 

analyses were carried out in R (R Core Team, 2018). Spatial processing of the Twitter and census data 

were executed using R packages sp (Bivand et al., 2013) and rgeos (Bivand and Rundel, 2017). Network 

construction and statistical calculations were performed using package igraph (Csardi and Nepusz, 

2006). Generalized Additive Models (GAM) were fitted using package mgcv (Wood, 2006). Model 

selection procedure of Generalized Linear Models (GLM) was done through package MuMIn (Barton, 

2016). Figures were produced with package ggplot2 (Wickham, 2016). 

3. Results 

Network density – i.e.,the proportion of non-zero ties – was higher in the follower networks (7.84% 

and 11.0%, in the GBA and the US) than in the mobility networks (2.85% and 3.12%). In other words, 

a higher proportion of area pairs was characterised by at least one follower tie, than by at least one 

physical observation of a user who is a resident of one area ‘visiting’ the other area. The commute 

network density was lower still (1.37%), indicating that regular work-related commutes take place 

between a small subset of (adjacent) county pairs, out of all possible county pairs in the US.  

Follower ties and mobility ties markedly differ in their form of distance decay (Figure 3). In the main 

analysis, according to the AIC-based model selection procedure, the full models had highest relative 

support in 4 out of 5 cases (Table 3). Only in the case of the mobility tie models in the GBA did the 

most parsimonious model lack the ‘Income × Distance’ effect – although in that case the full model 

came second, not far behind in terms of relative support (AICw of 0.31 vs. 0.69). Specifically, the 

hypothesis that distance and SD dissimilarity and their interactions (with the exception of the ‘Income 

× Distance’ interaction for follower ties in the GBA) affect follower and mobility tie formation was 

supported by the data.  

The effect of distance on tie formation was: (a) consistently negative; and (b) larger for mobility ties 

than for follower ties. In terms of effect size, observing best models’ predicted values in the relevant 

parameter space (Figure 4) as well as standardised coefficients (Table 3) revealed that distance effect 

on mobility tie formation was stronger by an order of magnitude compared with follower tie 

formation. The effect of distance on commute frequency was higher still – however, it should be noted 

that the x-axis for commute predictions in Figure 4 does not show the full range of distances, but only 

distances up to 200 km, since commute realisation above that distance is practically nil.  

                                                           

2  https://github.com/docnow/twarc 

https://github.com/docnow/twarc
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The effects of median income and median age were also largely consistent among examined tie types 

and scales. Income effect was positive in all cases (Table 3, Figure 4), with no substantial ‘income × 

distance’ interaction effect size in the studied parameter space. Age effect was consistently negative 

(Table 3, Figure 4) – i.e., follower and mobility tie realisation constantly increased when destination 

area had a lower median age. The effects of income and age dissimilarity thus maintained their 

direction (positive and negative, respectively) irrespective of distance, at both sites (Figure 4). 

The effect of racial composition dissimilarity on tie formation was consistent among four out of five 

models, with the exception of the follower ties in the GBA (Table 3, Figure 4a). In the four models, the 

highest tie realisation rates were associated with low dissimilarity (i.e. high similarity) in racial 

composition – as might be expected. Additionally, a strong ‘race × distance’ interaction effect was 

observed at the US scale – suggesting that race dissimilarity becomes irrelevant when long-distance 

ties are concerned, compared with short-distance ties which were more frequent when racial 

composition is similar (Figure 4b). Predicted follower tie formation in Boston, however, was highest 

at short distances and high dissimilarity in racial composition.  

Explained deviance was 8.6% and 7.5% in follower tie models, and 17.1% and 23.5% in the mobility tie 

models, for the GBA and the US, respectively, and 54.7% in the US commute model. Effect sizes of 

examined variables were also larger when predicting mobility compared with follower ties – most 

notably for distance effect (Figure 3), but for the SD variables, as well (Table 3). Overall, the range of 

predicted tie realisation within the 0.05–0.95 inter-quantile parameter space (in all independent 

variables) was 0.004–0.031% and 0.002–0.006% for follower models, compared with 0.003–1.071% 

and <0.001–0.989% for mobility models, in the GBA and US areas, respectively.   

4. Discussion 

Our analysis bolsters the negative effect of distance on virtual (Stephens and Poorthuis, 2015) and 

physical (Liu et al., 2014) Twitter tie formation probabilities (hypothesis 1). We suggest that the 

relative weakness and low-cost of virtual tie formation (Wellman and Hampton, 1999) makes them 

less sensitive to distance, compared with physical ties. Nevertheless, even for virtual ties distance is 

not ‘dead’ (Mok et al., 2010), and proximity still makes a difference (Figure 3).  

Physical ties were governed by distance – shrinking towards an average zero realisation rate above a 

distance of several hundred kilometres. Individuals may have more reasons to physically travel short 

distances, however the cost of physical travel is higher than the cost of creating a virtual follower tie 

on Twitter. We hypothesise that this additional cost is responsible for: (1) sharper decline and (2) 

towards a zero average rate, in case of mobility, as opposed to follower tie formation (Figure 3). 

Naturally, the cost of maintaining a regular commute is higher than that of conducting any given one-

time travel (Figure 3). Indeed, regular commute travel to distances of over 160km accounts for only 

2.6% of commuter flows in the USA (Nelson and Rae, 2016).  

In addition to distance effect, previous studies demonstrated that both types of tie formation—virtual 

and physical—are affected by dissimilarity in populations-level characteristics, such as spoken 

language (Takhteyev et al., 2012), cultural barriers (Kallus et al., 2015), and political or other interests. 

Our work is the first to show that the effect of distance was stronger by an order of magnitude than 

that of SD characteristics dissimilarity – namely income, age and race differences: the distance × SD 
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interactions had smaller and less consistent effect size than the main effects. Even so, much of the 

variation in tie formation probability remains unexplained. We hypothesise that other population 

characteristics and common interests (such as political views) (Halberstam and Knight, 2016) may 

explain some of the remaining variation.  

The two study areas were generally characterised by similar patterns (Figure 4). The only substantial 

difference in tie formation determinants was observed in relation to the effect of racial composition. 

In other words, follower tie formation in the GBA was most frequent among nearby tracts of low racial 

composition similarity. We hypothesise that this unexpected result is caused by the relatively low 

variation in racial composition (84.1% white population) and concentration of other races in a few 

specific locations (Fig. S3), which may be characterised by relatively high follower tie rates, due to 

unaccounted factors (such as economic activity). Conversely, follower, mobility and commute tie 

formation in the US as a whole showed a consistent pattern, whereby ties are formed more frequently 

between counties of higher racial composition similarity (hypothesis 2). This pattern is consistent with 

individual-based social network studies (Marsden, 1987). 

The fact that our Twitter-based findings were in agreement across the two analysed scales and with 

the results of applying the same procedure to an independent data source – the commute dataset – 

strengthens their validity (Figure 4). This suggests that our results do indeed reflect real-world human 

behaviour, rather than being an artefact of LBSN data (Pfeffer et al., 2018).  

Using a bi-directional network approach and directional predictors (income and age difference) our 

results highlight the asymmetric nature of spatial segregation in society (hypothesis 3). Follower, 

mobility and commute ties were more frequently formed when directed towards areas of relatively 

higher median income and lower median age. The observed directional income effect is in line with 

previous small-scale studies on directional segregation in populations of contrasting socio-economic 

background. For example, an asymmetric mobility pattern was observed between two contrasting 

socio-economic regions of Louisville, based on Twitter data (Shelton et al., 2015). We hypothesise that 

areas of a younger median age may be more economically influential, and therefore attract more 

network attention – be it virtual or physical. In addition, areas of a higher median income and lower 

median age may have a higher proportion of relevant ‘experts’ that provide specialised knowledge, 

advice and services, thereby attracting further physical and virtual attention in the network (Cornwell 

and Cornwell, 2008). 

It should be noted that segregation patterns are not merely a direct outcome of SD population 

characteristics and physical distance, but are also shaped by the pre-existing spatial structure of cities. 

Although urban structure, rather than SD differences, may also partially account for our results, we 

expect their role in our case to be minor, for several reasons. First, because we analysed virtual as well 

as mobility ties, and found similar patterns in both. Virtual ties are clearly unconstrained by urban 

structure: any Twitter user can follow any other user at the same ‘cost’, regardless of their spatial 

connectivity in the real world. Second, our large-scale analysis (US counties) – where urban structure 

is largely masked, due to the aggregation of whole cities into the same areal unit – revealed similar 

results when compared with the local-scale (GBA) analysis. Third, we expect that our large sample of 

census tracts and counties covering a wide area (Table 2) to reflect a variety of different urban 

structures, thereby avoiding bias towards any specific structure, such as the one revealed in 

Washington, D.C. (Huang and Wong, 2016).  
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Understanding social factors that shape spatial community formation may initiate progress beyond 

exploratory community delineation (Nelson and Rae, 2016), towards spatial segregation prediction. 

We examined spatial segregation in physical and virtual activity spaces, by applying a network-analysis 

approach to Twitter data. We showed that spatial segregation is more enhanced in physical space 

than in virtual space. The contribution of social characteristics to segregation was found to be smaller 

by an order of magnitude compared with distance. Nonetheless, SD effects were ubiquitous and 

consistent at both region- and country-scale, and in virtual and physical ties alike. Mapping intangible 

barriers for population movement in physical and virtual space can contribute to understanding the 

formation of such barriers as a first step towards reducing the negative effects of spatial segregation 

in human society.   
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Figure 1: Calculation of the follower tie ratio between two census tracts in the Greater Boston Area 

(GBA) (44007013101 and 44007013001). Grey segments represent all 90 possible follower ties 

extending from Twitter users whose estimated ‘centre of activity’ is located in tract 44007013101 

towards users in whose ‘centre of activity’ is in tract 44007013001. Red segments represent the 7 ties 

that are actually realised. Follower tie ratio for the 44007013101→44007013001 edge is therefore equal 

to 7/90, or 7.78%. 
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Figure 2: Observed follower and mobility ties between adjacent census tracts in the Greater Boston 

Area (GBA). Grey lines represent potential ties count, red lines represent actual count. Note that for 

visual clarity, these figures do not display the entire networks, but only sub-networks of adjacent areas 

– i.e.,ties between all areas A and B which share a common border. Models (Table 3, Figure 3) were 

fitted to data on all tie pairs, not just the adjacent ones. Also note that line width is on a logarithmic 

scale. 

 

 

Figure 3: Follower and mobility tie proportions as function of geographical distance in the Greater 

Boston Area (GBA) and the US. Lines show the average trend based on a Generalised Additive Model 

(GAM). 
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Figure 4: Predicted follower, mobility and commute tie proportions, as function of geographical 

distance and socio-economic dissimilarity in the Greater Boston Area (GBA) and the US, based on 

models described in Table 3. Explained deviance was 8.6% and 17.1% in the GBA (follower and 

mobility, respectively), and 7.5%, 23.5% and 54.7% in the US (follower, mobility and commute) 

respectively. Predicted values are shown as function distance and income dissimilarity (1st column), 

distance and age dissimilarity (2nd column) and distance and race dissimilarity (3rd column). 
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 GBA US 

Period start 2016-03-29 2016-05-26 

Period end 2017-02-12 2016-10-05 

Period length 320 days 132 days 

Bounding box area 49,805 km2 13,094,663 km2 

Geo-located tweets 1,855,513 21,896,420 

Unique users 73,563 876,764 

 

Table 1: Description of Twitter data for the Greater Boston Area (GBA) and the US. 

 

 GBA US 

 Follower Mobility Follower Mobility Commute 

Vertices 1,760 3,108 

Edges 3,097,600 9,659,664 

Non-zero ties 7.84% 2.85% 10.4% 2.40% 1.37% 

 

Table 2: Description of weighted directed networks representing virtual (i.e. follower) and physical (i.e. 

mobility) ties between predefined geographical areas (census tracts and counties, respectively) in the 

Greater Boston Area (GBA) and the US. 

 

Area Type Intercept Dist. Income Age Race Income×Dist. Age×Dist. Race×Dist. AICw 

GBA Follower -8.863 -0.409 0.027 -0.021 -0.076 0.005 0.018 -0.082 0.996 

  -8.863 -0.409 0.025 -0.021 -0.076 - 0.019 -0.082 0.004 

  -8.863 -0.41 0.027 -0.023 -0.076 0.013 - -0.082 <0.001 

  -8.863 -0.409 - -0.015 -0.076 - 0.015 -0.082 <0.001 

  -8.863 -0.41 0.019 -0.024 -0.076 - - -0.082 <0.001 

  -8.863 -0.409 - -0.019 -0.076 - - -0.082 <0.001 

 Mobility -7.259 -1.183 0.104 -0.257 -0.308 - 0.056 0.032 0.69 

  -7.259 -1.183 0.102 -0.257 -0.309 -0.003 0.057 0.032 0.31 

  -7.267 -1.191 0.099 -0.257 -0.339 -0.006 0.058 - <0.001 

  -7.267 -1.191 0.104 -0.257 -0.339 - 0.056 - <0.001 

  -7.269 -1.191 0.111 -0.298 -0.307 0.016 - 0.036 <0.001 

  -7.269 -1.191 0.096 -0.299 -0.309 - - 0.033 <0.001 
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US Follower -10.243 -0.188 0.056 -0.049 -0.033 0.01 -0.013 0.1 1 

  -10.244 -0.188 0.056 -0.053 -0.033 0.01 - 0.1 <0.001 

  -10.244 -0.187 0.06 -0.049 -0.033 - -0.011 0.1 <0.001 

  -10.244 -0.187 0.06 -0.053 -0.033 - - 0.1 <0.001 

  -10.243 -0.188 0.054 - -0.033 0.009 - 0.099 <0.001 

  -10.243 -0.187 0.057 - -0.033 - - 0.1 <0.001 

 Mobility -7.857 -1.235 0.454 -0.396 0.068 0.072 0.005 0.386 0.998 

  -7.857 -1.234 0.454 -0.399 0.068 0.072 - 0.386 0.002 

  -7.861 -1.237 0.407 -0.395 0.059 - 0.003 0.377 <0.001 

  -7.861 -1.237 0.407 -0.397 0.059 - - 0.377 <0.001 

  -7.772 -1.165 0.436 -0.391 -0.124 0.057 0.037 - <0.001 

  -7.77 -1.16 0.435 -0.414 -0.125 0.054 - - <0.001 

 Commute -36.912 -20.083 3.004 0.288 4.053 1.769 0.288 2.513 1 

  -36.982 -20.127 3.022 - 4.066 1.782 - 2.52 <0.001 

  -36.897 -20.081 3.242 0.445 0.058 1.917 0.445 - <0.001 

  -37.003 -20.147 3.242 - 0.058 1.919 - - <0.001 

  -36.925 -20.092 3.276 0.461 - 1.937 0.461 - <0.001 

  -37.034 -20.16 3.274 - - 1.938 - - <0.001 

 

Table 3: Model selection results for GLM models of follower, mobility and commute tie probability in 

the Greater Boston Area (GBA) and the US, as function of geographical distance, socio-economic and 

demographic (SD) dissimilarity, and their interactions. Only the six most highly supported models are 

shown per model selection procedure (i.e. area and network type). Models are ordered by decreasing 

AIC, starting from the most supported model (in bold). The last column shows Akaike weights (AICw), 

which express relative weight of evidence for each model, summing to 1 across all models. An AICw 

value for model i can be interpreted as the probability that model i is the best model for the observed 

data, given the candidate set of model. The remaining columns show standardised coefficients of each 

independent variable in each model (when present). 
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