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Abstract 

The increasing access to spatio-temporal datasets, data-driven modelling methods and computational 
power have transformed the way we do science. Yet most geodata-driven approaches currently 
disregard the spatial and temporal aspects of the data they are based on. Here we present and evaluate 
a hybrid machine learning approach that combines statistical mixed effects theory with the power of 
random forests. This approach, namely mixed-effects random forests or MERF, is used to model 
monthly crimes in New York City (USA). Our results show that MERF leads to lower prediction errors 
and to lower spatial autocorrelation in the residuals than a standard random forest model. This shows 
that there are approaches to mitigate the non-geocomputational nature of machine learning methods.  
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1. Introduction  

An ever-increasing array of spatio-temporal datasets is becoming available to geo-information 
practitioners and researchers. This relatively new phenomenon, coupled with the emergence of novel 
analytical approaches, has transformed the way we do science and manage our socio-economic and 
natural resources. Yet, most of these analytical approaches are not geocomputational by nature. Or 
put in other words, they do not explicitly consider the presence of spatial and/or spatio-temporal 
patterns in the data. This despite the fact that such patterns might negatively affect their performance. 
For instance, if the target variable is spatially autocorrelated, then the assumption of independence 
in regression models is violated (Lichstein et al., 2002). Moreover, spatial autocorrelation often leads 
to correlated residuals that indicated structural problems in the selected analytical approaches (Chen, 
2016). Spatial autoregressive models have been proposed to handle these autocorrelation problems 
(Hua et al., 2016). However, these statistical models have difficulties coping with the variety, volume, 
velocity and high dimensionality of modern spatio-temporal datasets. This difficulty explains the rise 
and pervasiveness of machine learning-based approaches.  

Machine learning-based approaches can solve classification and regression tasks involving small and 
big data. However, the use of machine learning methods with spatio-temporal datasets requires 
careful consideration because these methods are not inherently equipped to deal with spatial or 
spatio-temporal patterns (Santibañez et al., 2015). 
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Here we present and evaluate a hybrid machine learning method that combines statistical mixed 
effects theory (to deal with clustered data) with the power of random forests (to model high-
dimensional and non-linear problems). Mixed effects random forests (c.f. section 2) have, at least 
theoretically, a higher potential to properly capture the patterns present in the data. A case study 
(section 3) based on modelling crime is used to illustrate our work.  

2. Mixed effects random forests  

Linear mixed effects models are relatively popular because data tends to be clustered (Blood et al., 
2010; Zhang et al., 2016). From a geographical perspective this means that data are either clustered 
hierarchically (i.e. various types of crops inside a generic class “agriculture”) or longitudinally (time 
series available for a set of locations) (Meng, et al., 2012; Ver Hoef et al., 2010). Mathematically linear 
mixed effects models can be represented as: 

𝑦𝑦𝑖𝑖= 𝑋𝑋𝑖𝑖𝛽𝛽+ 𝑍𝑍𝑖𝑖𝑏𝑏𝑖𝑖+ 𝜖𝜖𝑖𝑖      Equation 1
   

 
Where  𝑦𝑦𝑖𝑖  is a vector containing the target variable in cluster i, 𝑋𝑋𝑖𝑖 and 𝑍𝑍𝑖𝑖 are matrices with the fixed 
and random effects features, 𝛽𝛽 is the unknown vector of fixed effects coefficients, 𝑏𝑏𝑖𝑖 is the unknown 
vector of random effects coefficients for the cluster i, and 𝜖𝜖𝑖𝑖  is the unknown vector of residual errors. 

The mixed-effects random forest (MERF) model was first proposed by Hajjem et al. (2014) who used 
it to predict the first-week box office revenues of movies. Their results confirmed the superiority of 
MERF over a standard random forest (RF) model in this non-spatial case study. MERF’s mathematical 
formulation is entirely parallel to that of the linear mixed effect model but replacing the fixed effect 
term (𝑋𝑋𝑖𝑖𝛽𝛽) by a RF model, which can be represented by an unknown function 𝑓𝑓𝑓 of the matrix of fixed 
effects features:  

    𝑦𝑦𝑖𝑖= 𝑓𝑓𝑓(𝑋𝑋) + 𝑍𝑍𝑖𝑖𝑏𝑏𝑖𝑖+ 𝜖𝜖𝑖𝑖         Equation 2 

 
MERF is solved using an iterative approach that relies on the expectation–maximization algorithm 
(Moon, 1996). Once the algorithm converges, it can predict the value of new observations within a 
given cluster by adding the population-averaged prediction of the just trained RF model to the 
corresponding random effects. For more details regarding the MERF algorithm, please refer to Hajjem 
et al. (2014).  

3. Case study  

3.1. Objective and experimental set up  

The performance of MERF is evaluated using crime and complaints data from New York City (NYC), the 
most populous city in the USA. A standard RF model is used to benchmark our results.  

Both the crime and the complaints datasets were obtained from the NYC open data website (NYC 
Information Technology & Telecommunications, 2019). The crime dataset refers to all the crimes 
reported by the NYC police department and contains the date of occurrence and the coordinates of 
the crime.  Reported complaints to the 311 service were used as explanatory variables. This dataset 
contains various types of complaint, the date when they were reported and the coordinates. 
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Considering data availability, we concentrated our analysis on eight of the most common complaints 
found in the 311 dataset and limited our study to the period 2010 to 2017. Further both the crime and 
complaint datasets were spatially aggregated to the postal zip code level (248 units) and temporally 
aggregated to a monthly time scale.  

One-hot-encoding was used to create machine learning-valid features from the discrete counts found 
in the complaint dataset. This encoding method was also applied to the zip codes (which were used 
as clustering feature in the MERF model and as a regular feature in the standard RF model), and to the 
month feature of the crime dataset. To consider spatial effects, we calculated for each zip code the 
average number of crimes that occurred in adjacent zip code areas in the previous year (i.e. time offset 
spatial lag) as well as the local indicators of spatial autocorrelation (also known as LISA’s quadrants) 
of the previous year.  

All features were normalized using a robust scaling approach based on the median and interquartile 
range. This normalization method was selected because it can handle outliers and non-normally 
distributed features. Group k-fold was used to find the best parameters for both the MERF and RF 
models. This cross-validation method preserves the temporal structure of our data because full years 
were included/excluded in the training process.   

Finally, we performed numerous experiments to optimize the features that should be used to 
determine the fixed and random effects. Our model evaluation metrics consisted on the mean 
absolute error (MAE) of the predicted number of monthly crimes in each zip code, and on the spatial 
autocorrelation of the residual errors measured by the Moran’s I statistic. These metrics were used to 
find the best MERF model (using data for 2010-2016), and to evaluate the resulting model (for the 
year 2017).  

3.2. Results  

The results of our parameterization experiments show that the spatial feature (lagged number of 
crimes directly around each zip code) consistently gets high feature importance. This confirms the 
spatio-temporal autocorrelation of the target feature and justifies the use of MERF models. At the 
same time, it indicates that the selected complaints have less explanatory power to predict crime. Our 
results also show that there is a positive correlation between the MAE of the prediction and the spatial 
autocorrelation of the residuals: the lower the errors, the less spatially autocorrelated the residuals 
are.  

 

Model  MAE of  
prediction  

Moran’s I of  
residual errors  

MERF 8.89 0.12 
RF 9.72 0.14 

 

Table 1: Mean absolute error of the prediction and spatial autocorrelation of the residuals as provided 
by the MERF and the standard RF models  
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The best MERF model had the complaints, the lagged number of crimes and LISA’s quadrants as fixed 
variables, and the month and the lagged LISA’s quadrants as random effects features. The zip code 
was used as cluster variable. A side-by-side comparison between the MERF and RF models (Table 1) 
shows that the former has both a lower MAE for the predicted crimes, and a lower spatial 
autocorrelation of the residuals.   

 

Figure 1: Random effects coefficients for each zip code in NYC 

Figure 1 shows the spatial distribution of the random effects’ coefficients (i.e. the 𝑏𝑏𝑖𝑖 vector in Equation 
2). This map illustrates both the intensity and direction of these effects as well as their spatial 
clustering in NYC. Finally, figure 2 shows that the MERF model can capture the spatial patterns of crime 
in NYC, represented here by the LISA’s quadrants for April 2017. The corresponding Moran’s I for the 
actual crimes is 0.51 and the predicted one is 0.53.  

 
Figure 2: Actual (left) versus predicted (right) distribution of LISA’s quadrants for each zip code and for 
April 2017. Map legend; 0 for not significant, 1 for high-high spatial clusters, 2 for low-high spatial 
outliers, 3 for low – low spatial cluster, 4 for high – low spatial outliers.  
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4. Conclusions  

The use of machine learning approaches is becoming popular among geo-information practitioners 
and researchers. Yet, the implementation of these approaches requires careful consideration because 
spatial data is special. Here we evaluate the capabilities of mixed effects random forests (MERF) to 
capture spatial patterns of crime in New York City. Our results confirm that MERF models coupled with 
spatial variables can capture spatial patterns better than standard random forest methods. The MERF 
models had lower errors and lead to residuals with less spatial autocorrelation. This shows that there 
are approaches to mitigate the non-geocomputational nature of machine learning methods and that 
further research is needed to design spatially aware data-driven models. 
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