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Abstract 

Global Positioning System (GPS) technology has changed the world. We now rely on it to 

navigate our vehicles, source real-time information about chosen locations and to track 

our movements. GPS is, however, principally limited to receiving signals outdoors and 

therefore not able to provide reliable information about indoor movements. This paper 

examines patterns of indoor physical activity and sedentary behaviour using a 

combination of lifelogging and GPS movement data to develop an index for capturing 

activity changes. In our preliminary analysis, we explore possible associations between 

people’s indoor physical activity levels and their socio-demographic characteristics. 

Keywords: GPS movement data, lifelogging, indoor mobility, sedentary behaviour, 

physical activity. 

1. Introduction 

In comparison to our parents’ or grandparents’ generations, we spend a far greater proportion of time 

indoors, limiting our levels of physical activity. The average adult now spends more than 90% of their 

time in an indoor environment (Bruinen de Bruin et al., 2008). Social and technological changes have 

led us into an era of increasingly sedentary lifestyles that have been linked with decreased productivity 

at work, poor metabolic health and a greater risk of heart disease (Siddarth et al., 2018). Due to the 

considerable length of time we spend in various types of enclosed spaces (e.g., homes, workplaces, 

cars and public transport), a measure of the levels of indoor physical activity would provide valuable 

behavioural information.  

Global Positioning System (GPS) technology provides reliable and high-precision location data of 

people’s whereabouts. We can use this for navigation as well as for tracking our movements for a 

variety of purposes such as outdoor sporting and leisure activities. However, while GPS can receive 

signals outdoors, structural interference means that it is not able to provide reliable information about 

indoor movements. 

Without recognising whether an activity takes place indoors or outdoors, a number of studies have 

looked at pattern recognition methods to determine the mode or type of activity being performed 

from raw acceleration data (including sitting, standing, walking, running, cycling, vacuum cleaning,  

Nordic walking, ascending and descending stairs, and lying down (Arif and Kattan, 2015; Twomey et 
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al., 2018)). Relating the amount of time spent on each of these activities to medical records data allows 

us to drive to conclusions about the negative effects of non-exercising behaviours (Loveday et al., 

2015).  Furthermore, breaks in sedentary time can be shown to have favourable associations with 

body mass index (BMI), triglyceride levels and glucose levels that are  independent of the total time 

spent sitting or engaged in physical activities (Healy et al., 2008).The integration of accelerometery 

and GPS in wearable technology gives us the capability to “assess the indoor and outdoor location of 

physical activity and sedentary behaviour” (Loveday et al., 2015).  

With this in mind, in this paper we propose a frequency-based method that uses a count of changes 

in activity derived from a combination of GPS and lifelogging data as a measure of physical activity.   

2. Data and case study 

In this research we use the Integrated Multimedia City Data (iMCD) platform that covers the Greater 

Glasgow Urban Area, UK. The is a multi-modal data platform that consists of seven strands of data: a 

socio-demographic participant survey with travel and activity diaries (2095 participants), social media 

with combined local and national news website data, remote sensing data, sensor data (333 

participants who collected GPS movement data; 223 participants with additional lifelogging images 

and sensor readings), specialised private sector datasets and other administrative data such as Census 

data (detailed information about all the strands is available in Thakuriah, Sila-Nowicka and Paule, 

2016).  

The data used in this study come from a sample of 160 participants and consist of a set of individual-

related records, where each record is a person’s single activity derived from their GPS and lifelogging 

data (Figure 1).  

Participant ID Image ID Timestamp Activity derived 
from lifelogging 

data 

Location  and 
activity derived 

from GPS 

1 1234 12/09/2015 12:37:08 Walking Indoor Home 

1 1235 12/09/2015 12:37:15 Walking Indoor Home 

1 1236 12/09/2015 12:37:22 Walking Outdoor Walk 

1 1237 12/09/2015 12:37:29 Walking Outdoor Walk 

 

Table 1: Data structure of the used dataset. 

In order to derive the type of activity, we used a combination of GPS movement data and lifelogging 

data (Figure 1) which were pre-processed as follows: 

The collected in the project GPS data were semantically enriched using two-step feedforward neural 

network with a general backpropagation algorithm for trajectory classification. We first distinguished 

the movement (walk, drive etc.) from the non-movement segments. The stop-related segments were 

classified based on their location and importance to the user starting with ‘home’ and then into a set 

of significant locations such as ‘work’, ‘school’, ‘third place’. Other stops were compared to a 

Points/Places of Interest dataset (a combination of Ordnance Survey, OSM and self-created POI 

dataset) in order to semantically enrich them with their functions such as: shopping, leisure, 

education, health or transport-related (Siła-Nowicka et al., 2016).  
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Figure 1: A process of creating the integrated database used in this project.  

The Lifelogging data were collected from a wearable camera (Autographer) carried by the project 

participants for up two consecutive days. These cameras take images at time interval of 7 seconds, 

and every image generates a set of associated sensor readings (the sensors are accelerometer, motion 

detector, magnetometer, thermometer, GPS sensor and a brightness detector). The sensor readings 

were used to separate indoor and outdoor locations as well as to determine the type of activity e.g, 

driving and walking for outdoors and sitting, standing, walking or lying for indoors. In order to make 

these classifications we used the Random Forest classifier designed by Sila-Nowicka and Thakuriah, 

(2019).  

The processed GPS and lifelogging data were then temporally linked resulting in an integrated 

database of individual images with an assigned travel mode or type of activity and its possible indoor 

or outdoor location. In the resultant dataset, the average daily recorded time of indoor activities was 

5:02 hours, with min of 1:23h and max 14h: 54h. 

The socio-demographic information about each of the participants consists of age, gender, income, 

working status and general health information; BMI and participants’ attitude to walking. The average 

age of respondent is about 48 years old, nearly half of the respondents are male, 69% are actively 

working and more than 70% claim to be relatively healthy. 

3. Method 

In this research we limited ourselves to only indoor locations as our focus is on the levels of physical 

activity in enclosed spaces. We designed a frequency-based index which we call Activity Change Index 

(ACI) that uses a count of the changes in type of activity (e.g. from sitting to standing) derived from a 

combination of GPS and lifelogging data as a measure of physical activity. ACI can be written as: 
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𝐴𝐶𝐼𝑖 =
𝐶𝑖

𝑀 ∗ 𝑇𝑖
, 

 Equation 1 

where ACI is the Activity Change Index, Ci is the count of all activity changes, M is the maximum 

number of changes possible in one hour and Ti  is the total time spent indoors (in hours) by an 

individual i.  With the temporal resolution of the integrated database at 7 seconds (corresponding to 

the lifelogger collection interval), the maximum number of changes in each hour would not exceed 

514 changes.   

4. Results 

The levels of ACI vary from 0.0004 to 0.07875, where the lowest value corresponds to one change of 

activity within a four-hour period and the highest corresponds to a change every two minutes. The 

mean value of the ACI across the studied population is equal to 0.01252 which translates to a change 

of activity every 10 minutes.   

For a more in-depth analysis, we used beta regression to study the associations between ACI and 

socio-demographic and health-related characteristics of the survey participants. The dependent 

variable was ACI with a range of values from 0 to 1. The results from the modelling are presented in 

Table 2. Several factors show significant associations with the levels of Activity Change Index.  

  β SE P-Value  
Intercept -3.982 0.409 0.000 *** 

Socio-demographic     

Age -0.009 0.004 0.027 * 

BMI 0.011 0.013 0.414  
Gender (Female as a reference) -0.228 0.115 0.048 * 

Work (Employed as a reference) 0.049 0.143 0.734  
Driving licence (Does not own as a 
reference) 0.286 0.146 0.050 * 

Pet (No as reference) 0.070 0.121 0.561  
Health (Bad as a reference)    

Health-Fair 0.504 0.254 0.047 * 

Health-Good 0.011 0.219 0.959  
Income 0.000 0.000 0.731  
Attitudes (For me, walking is something I like (disagree to  agree)) 

Walking attitude (Agree as a reference)   

Walking attitude - neutral -0.803 0.272 0.003 ** 

Walking attitude -disagree 0.065 0.205 0.751   

Pseudo-R2 

AIC  

0.37 
417.98   

 
 

 

Table 2: Associations between ACI and socio-demographic factors. 
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Older people and male participants have the lowest values of ACI meaning they change their activities 

the least frequently.  People who reported their health as fair tend to change modes or types of 

activities more regularly than people reporting bad health.  Drivers tend to be more active in indoor 

locations. Participants who stated that they have a neutral attitude to walking tend to have longer 

individual activities in comparison to people who like to walk. The presented results show some 

significant but in most cases to be expected associations between the levels of activities and different 

socio-demographical and health-related aspects. 

5. Conclusions and future work 

Our overall goal in this paper has been to evaluate whether a combination of GPS and lifelogging data 

can provide a way to detect patterns in the levels of indoor physical activities. The ACI represents an 

average activity change level which proves to be useful information describing sedentary patterns of 

individuals. Nevertheless, as the index represents the average values across time it generalizes 

possible hourly differences. To overcome this problem, in future research we will create hourly-based 

time series from the data and will look at the changes across the time of day as well as the activity 

type in different locations (home, work place, school etc.) to understand how different locations, 

influence possible levels of physical activities. Furthermore, in order to show more dependencies we 

plan to cluster the survey’s participants. 
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