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Abstract 

Growing interest in data for bicycling planning has many jurisdictions aiming to develop a 

sampling strategy for measuring bicycle counts. However, it can be difficult to determine 

where bicycling counters should be placed to generate a representative sample of bicycling, 

and bicycle counts tend to only occur on heavily used bicycle routes. Our goal, is to utilize 

crowdsourced data on bike ridership, from Strava Metro, and continuous signal processing 

data mining techniques to map regions of bicycling behaviour in San Francisco – CA, US. 

Bicycling behaviour regions can be used to stratify bicycle count sampling. Our results 

indicate it is possible to differentiate bicycling behaviour from Strava and we mapped 

routes categorized into six unique ridership behaviours including commute to work, 

commute to school, leisure, 8 am peak , 11 am peak and least utilised. We recommend 

sampling ridership from each of the categories when developing count programs. 
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1. Introduction 

Planning bicycling transport options is challenging because of the lack of information on bicycling 

behaviour (Gosse and Clarens, 2014). Data on bicycling ridership, used for transportation planning, is 

typically obtained via manual counts and automatic counters (Butler, Skinner and Perl, 2013; 

Nordback et al., 2013).  Automatic counters are usually installed at a single location and measure 

ridership with high temporal resolution, whilst manual counts typically include more locations but are 

measured for a short period of time.  When planning bicycle counts it is problematic to determine 

where and when counts should occur. A systematic approach to stratifying the city to enable 

representative sampling of bicycle ridership would help planners ensure data is representative and 

collection efficient. 

The advent of crowdsourced data on bike ridership represents an opportunity to develop 

methodologies to capture the spatial-temporal patterns in bicycling behaviour (Jestico, Nelson and 

Winters, 2016). Crowdsource bicycling data has the benefit of being high resolution in both space and 

time. Most research using crowdsourced bike data have focused on counts in daily or seasonal time 

steps (Romanillos et al., 2016), yet there is potential to analyse continuous time series signals to make 

more detailed characterizations of bicycling behaviour. Space-time behaviour patterns can be used to 

partition bicycling routes and streets into categories. By obtaining bicycle counts in each category a 

more representative sample of bicycling can be obtained. In this work, we used crowdsourced data 
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on bike ridership and data mining to map the spatial-temporal behaviour of cyclists in 2017 in San 

Francisco city - California, USA.  

2. Methods 

2.1 Crowdsourced data from Strava 

Strava Metro provided bicyclist count data from the  1st of January 2017 to the 31st of December 2017 

at one-minute temporal resolution along each street segment in San Francisco city - California, USA. 

Data includes 102,552 bicyclists of which 18.03 % were female, 77.30% were male and 4.67% did not 

declare their gender.  

2.2 Extracting cycling temporal profiles  

We aggregated the data by computing total hourly counts for each day and then calculating the mean 

for each hour of the day for all street segments for weekdays and weekends separately. The 

aggregation produced 18,027 curves representing the temporal profile of bicycling behaviour for each 

street segment for a given hour of the day. 

 
Figure 1: Mean hourly bicyclist count for weekdays in 2017 for each street segment in San Francisco 

city. 

2.3 Calculating Dynamic Time Warping (DTW) distances 

We used dynamic time warping (DTW) distance to assess the pairwise similarity between the temporal 

profiles of all street segments.  DTW is one of the most used metrics of similarity between two time 

series (Zhang et al., 2017) ; it finds the optimal global alignment between two time series by exploiting 

temporal distortions between them (Sakoe and Chiba, 1978). 

The best alignment is found by first applying Equation 1 to compute a pairwise distance matrix (𝑀) 

for all points in the two time series (Figure 2). 
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𝐷 = |𝐴𝑖 − 𝐵𝑗| + 𝑚𝑖𝑛 {

𝐷 [𝑖 − 1, 𝑗 − 1]

𝐷 [𝑖 − 1, 𝑗]

𝐷 [𝑖, 𝑗 − 1]
} 

 

Equation 1 

Here  𝐴𝑖  is the mean cyclist count for street segment 𝐴 at hour 𝑖 , 𝐵𝑗  is the mean cyclists count for 

street segment 𝐵 at hour 𝑗, 𝐷 [𝑖 − 1, 𝑗 − 1] is the previously computed distance between mean cyclist 

counts in the previous hour for both time series, 𝐷 [𝑖 − 1, 𝑗] is the previously computed distance 

between mean cyclist counts at the current hour for series 𝐵 and the previous hour for series 𝐴, and 

𝐷 [𝑖, 𝑗 − 1] is the previously computed distance between mean cyclist counts at the current hour for 

series 𝐴 and the previous hour for series 𝐵. 

The DTW distance between the two street segments is calculated by finding the least cost path in 

matrix 𝑀 (Figure 2). In order to avoid unrealistic least cost paths (Zhang et al., 2017) we used a Sakoe-

Chiba band (Sakoe and Chiba, 1978) (See yellow polygon in Figure 2) to constraint the warping to a 

one-hour interval before or after the hour being warped. 

 

Figure 2 – Distance matrix (𝑀) for the hourly mean cyclist count of street segments 𝐴 and 𝐵. The 

optimal warping is highlighted in bright blue in the matrix (𝑀) and in the graphical representation on 

the right. The yellow polygon represents the warping constraint delineated by the one-hour Sakoe-

Chiba band. 

We calculated the pairwise DTW distance for 18.027 street segments, which generated an 18.027 X 

18.027 DTW similarity matrix (𝑊)  accounting for the differences amongst all curves.  

2.4 Identifying types of bicycling temporal profiles 

The dissimilarity matrix (𝑊)  can be used to find whether street segments were showing similar cyclist 

use pattern during the weekdays. For this, we applied Ward's clustering, a hierarchical bottom-up 
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algorithm that computes dissimilarities between two groups as the increase in the error sum of 

squares after merging those groups. The algorithm starts with each street segments as their own 

group and successively merges them into clusters based on the minimum increase in the error sum of 

squares, until it becomes a single cluster (Murtagh and Legendre, 2011). For selecting the optimal 

number of clusters, we used the Calinski-Harabaz Index (CHI) (Calinski and Harabasz, 1974) that 

considers the within and between groups dispersion as shown in Equation 2. 

𝐶𝐻𝐼 =
𝑡𝑟𝑎𝑐𝑒 (𝐵)

𝑡𝑟𝑎𝑐𝑒 (𝐻)
 

Equation 2 

here 𝐻 and 𝐵 are the within and between group dispersion matrices, the trace of 𝐻 is the sum of the 

within cluster variance and the trace of 𝐵 is the sum of the between cluster variances; a higher CHI 

indicates a better data partition (Ahmed, 2012) because it shows that the within group distances are 

lower and the between groups distances are higher.  

We varied the number of clusters from the number of street segments (i.e. the maximum possible 

number of clusters, if every street segment is allocated to its own cluster) to one and used the 

configuration with highest CHI. We plotted the profiles within each cluster and analysed their main 

characteristics so that we could meaningfully label them before mapping. Finally, we interpreted the 

bicycling behaviour in each cluster and assigned labels that are interpretable by city planners. 

3. Results and discussion  

3.1 Identifying types of bicycling temporal profiles 

The optimal partitioning of the street segments based on their temporal profile was achieved with six 

clusters, which were labelled according to the main characteristics we expected for each bicycling 

behaviour (Table 1).  In Figure 3, we show the temporal profiles for all street segments in the 

“Commute” and “School” clusters, which are the most relevant for transportation planners. 

Cycling behaviour 
Number of 

 peaks 

Approximate  

peak time 

Slope 

Commute 2 8 am | 6 pm Dramatic rises 

School 2 8 am | 4 pm Dramatic rises 

Leisure 1 1 pm Gradual rise 

Table 1: Main characteristics used link cycling behaviours to clusters.  

The commute cluster (n = 1109) was labelled based on its peaks around eight in the morning and six 

in the afternoon, which indicates that these street segments are being used by bicyclists on their way 

to work and back. Most of these street segments are located near picturesque parts of the city, such 

as green areas and shorelines (Figure 3). This finding supports the argument that scenery plays a role 

in route choices for cyclists, for not only leisure bicycling but also commute.     

The school cluster (n=2532) was named based on its peaks around eight in the morning and three in 

the afternoon, which indicates that these street segments are being used by bicyclists on their way to 
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school and back. Most of these street segments are located near educational institutions and some of 

them incorporate green areas.  

 
Figure 3 – San Francisco base map and street segments classified as “Commute” and “School” with 

respective temporal profiles displayed by graphs below the map.  
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4. Conclusions  

The use of Strava Metro data on bike ridership and data mining of continuous temporal signals allowed 

us to differentiate bicycling behaviour profiles in San Francisco – CA, US.  The use of maps to analyse 

the spatial distribution and label these clusters can help transportation planners to find the areas of 

similar bicycling patterns, which can help target interventions and stratify count programs. While 

crowdsourced fitness data over represents competitive cyclists, whose behaviour is not representative 

of all bicyclists (Barratt, 2017), by processing the continuous temporal patter in data we identified 

locations where commute patterns dominated.  For example, we identify signals that represented 

bicycling to school and bicycling to work (identified based on the timing of peaks of activity). The 

analysis of two core categories, “Commute” and “School”, highlighted the functional importance of 

the Golden Gate Park for connecting downtown and residential areas for both types of bicycling 

behaviour. Measuring and understanding the behaviour of bicyclists can improve the chances of 

success of strategies implemented in a transportation plan. 
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