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Abstract 

In the era of big data, discovery of spatial communities in vehicle movements plays a key 

role in understanding the urban structures and functions. While a number of community 

detection methods can be used to detect spatial communities in vehicle movements, these 

methods are usually designed without considering the network-constraint of vehicles and 

testing the significance of spatial communities. On that account, this study develops an ant 

colony optimization-based spatial scan statistic to detect statistically significant spatial 

communities in vehicle movements on urban road network. Road segments are used as 

basic units to represent the moving paths of vehicles. The spatial scan statistic is 

generalized to weighted spatially embedded graph to provide quantitative assessment for 

spatial communities, and the generalized spatial scan statistic and ant colony optimization 

are combined to detect arbitrarily shaped spatial communities. A Monte Carlo simulation 

method is developed to estimate the statistical significance of each detected spatial 

community. The effectiveness of the proposed method is evaluated by using both simulated 

and taxi GPS trajectory data sets.  
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1. Introduction 

With the development of location-aware technologies (e.g. Global Navigation Satellite System), a 

large amount of individual vehicle trajectory data (e.g. taxi GPS trajectories) have become increasingly 

available. These trajectory data can reveal the spatial interactions among different regions, and make 

it possible to analyse spatial communities in a city. A spatial community refers to a sub-graph of the 

spatially embedded graph constructed based on the interactions among different regions, where 

nodes within the sub-graph have significantly more internal connections than connections to other 

nodes (Guo et al., 2018). Discovery of such spatial communities in vehicle movements plays a key role 

in understanding the urban structures and functions (Liu et al., 2019). 

Most of existing studies for discovery of spatial communities first map the origin and destination 

(OD) points of vehicle trajectories onto certain areal units (e.g. spatial grids or traffic analysis zones), 

and then detect spatial communities by using two kind of methods, i.e. community detection methods 

ignoring geographic constraint and spatial community detection methods (Guo et al., 2018). The 

former methods first define an objective function (e.g. modularity), and then use an optimization 

method to find the best partition of the spatially embedded graph to maximize the objective function 

(Clauset et al., 2004; Rosvall and Bergstrom, 2008). However, without the consideration of geographic 

constraint, the community detection methods mainly identify communities strongly determined by 

geographical factors and usually fail to detect communities determined by other underlying factors 
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(Expert et al., 2011). To overcome this limitation, spatial community detection methods have been 

developed by integrating spatial factors into the objective function of a traditional community 

detection method (Expert et al., 2011; Gao et al., 2013) or enforcing a spatial contiguity constraint in 

a traditional community detection method (Wan et al., 2018; Guo et al., 2018). Although spatial 

community detection methods are more robust in discovering underlying spatial community 

structures, they usually neglect that vehicles in urban space are strongly constrained by road network. 

The spatial communities detected based on the areal units will be seriously influenced by the 

aggregation problem (Zhu et al., 2017). Recently, Zhu et al. (2017) and Liu et al. (2019) chose road 

segment or “stroke” as geographic unit to detect spatial communities, however, the statistical 

significance of discovered communities cannot be evaluated (they can always discover spatial 

communities in a spatially embedded graph, even though the graph has no natural spatial community 

structure) (Zhang and Moore, 2014). Although Wang et al. (2008) extended the spatial scan statistic 

(Kulldorff, 1997) to identify statistically significant communities, it cannot be used to detect arbitrarily 

shaped spatial communities from a weighed graph.  

Based on the above analysis, it can be seen that existing spatial community detection methods are 

usually designed without considering the network-constraint of vehicles and testing the significance 

of spatial communities; therefore, the identified spatial communities are very likely to be unreliable, 

even spurious. To overcome this limitation, this study aims to develop an ant colony optimization-

based spatial scan statistic for detecting statistically significant spatial communities with irregular 

shapes in vehicle movements.  

2. Spatial scan statistic for weighted spatially embedded graph  

Vehicle trajectories are first matched onto the corresponding streets using a simple map-matching 

method: choosing the nearest road segment of a sampled location as its matched road segment (Zhu 

et al., 2017). Then, a moving path of a vehicle can be represented as: path= [road segment1, road 

segment2, …, road segmentn]. Further, the spatially embedded graph G = (V, E) is constructed as 

follows: 

(i) V is the vertex set, and each road segment is regarded as a vertex of G; 

(ii) E is the edge set, and two consecutive road segments in a path form an edge in G, represented 

as < road segmenti, road segmenti+1>; 

(iii) The weight of an edge < road segmenti, road segmenti+1> in G is defined as the number of paths 

in which road segmenti and road segmenti+1 are consecutive road segments; 

(iv) The strength of a vertex vi is defined as the sum of the weights of edges linked to vi. 

For a weighted spatially embedded graph G= (V, E), a spatial scan statistic is defined based on the 

Poisson model. For a sub-graph Z, 𝑊𝑍 is the observed sum of the weights of the edges in Z, 𝑆𝑧  is the 

sum of the strengths of the vertexes in Z, 𝜇(𝑍) is the expected sum of the weights of the edges in Z 

under the Poisson model, 𝜇(𝑍) =
𝑆𝑧

2

4𝑊𝐺
, 𝑊𝐺  is the observed sum of the weights of the edges in G, 𝑆𝐺  is 
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3. Ant colony optimization-based spatial scanning method  

To detect statistically significant spatial communities efficiently, spatial scan statistic is first used 

to detect candidate road segments in spatial communities, and then candidate road segments are 

grouped into spatial communities by using ant colony optimization (Dorigo and Stützle, 2004).  

3.1 Detection of candidate road segments in spatial communities based on spatial scan statistic 

For each vertex vi in G, the scanning window (or sub-graph) is defined as the first-order 

neighbourhood of vi. For each scanning window, the likelihood ratio statistic in Eq.(1) is calculated, 

and the significance (p-value) of each scanning window is calculated using a Monte Carlo simulation 

method. Each simulated dataset is generated by randomly assigning each trajectory on the road 

network. The p-value of a scanning window Z can be calculated as: 

𝑝𝑧 =
∑ 𝐼𝑖

𝑁𝑟𝑒𝑝
𝑖=1

𝑁𝑟𝑒𝑝
                                                                        (2) 

Where Nrep is the number of simulated datasets (Nrep is set to 999 in this study), I is an indicator variable. 

After the ith simulation, if LRsim(Z) > LR(Z), then Ii = 1, otherwise, Ii = 0 (LRsim(Z) is the likelihood ratio 

statistic calculated based on the simulated dataset). To avoid losing any candidate road segments, the 

significance level is set to 0.1 and the multiple testing problem is not adjusted. Only the candidate 

road segments need to be grouped by the ant colony optimization method, therefore, the search 

space of the ant colony optimization method is significantly reduced.  

3.2 Discovery of arbitrarily shaped spatial communities based on ant colony optimization 

The ant colony optimization method is further employed to identify spatial communities via the 

random walks of ants in G based on the walk reachability between candidate road segments (Pei et 

al., 2011). The parameters of the ant colony optimization method are set according to the suggestion 

given by Dorigo and Stützle (2004). The number of ants (Nant) is set to the number of candidate road 

segments, the maximum number of iterations (Nite) is set to 200, the number of elite ants (Ne) is set 

to 20, the initial pheromone value (Mip) of each candidate road segment is set to the normalized value 

of the number of paths containing that candidate road segment, the pheromone evaporation value 

(Mpe) is set to 0.1 and the pheromone increment value (Mpi) is set to 0.1. The spatial communities are 

discovered in the following five steps: 

Step 1: Randomly select a candidate road segment R1, and then randomly determine a maximum 

walking length L of an ant from a Gaussian random function.  

Step 2: An ant walks from R1, and the next road segments R2 that the ant walks into is determined in 

proportion to the probability calculated based on the pheromone on R2. The ant stops walking 

until the walking length of the ant reaches L, then a sub-graph formed road segments is obtained.  

Step 3: Repeat Step 2 Nant times, and obtain Nant sub-graphs. For each sub-graph, calculate the 

likelihood ratio statistic using Eq.(1). The values of likelihood ratio statistic are sorted in 

descending order LR=[LR1, LR2,…,LRNant]. The first Ne ants in LR are identified as elite ants, and the 

pheromones of the road segments in sub-graphs generated by elite ants will be increased by Mpi. 

Pheromones on all the road segments volatilize Mpe. 

Step 4: Repeat Step1 to Step3 Nite times. All the sub-graphs generated by ants are considered as 

candidate spatial communities.  
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Step 5: The p-value of each candidate spatial community is calculated using the method introduced in 

Section 3.1. The significance level α is set to 0.01. The False Discovery Rate approach (Benjamini 

and Yekutieli, 2001) is used to control the multiple testing problem, and calculate the adjusted 

significance level αadj. A spatial community whose p-value is smaller than αadj will be identified as 

a statistically significant spatial community. 

4. Experimental analysis 

To evaluate the performance of the proposed method, a synthetic trajectory dataset with ten 

known spatial communities and 30% random moves was generated on a real road network taken from 

Beijing, China according to the method introduced by Guo et al. (2018) (shown in Figure 1(a)). The 

identified candidate road segments are presented in Figure 1(b). In Figure 1(c), one can see that ten 

predefined spatial communities are well discovered by the proposed method. In Figure 1(d), the 

communities discovered by the widely-used modularity-based hierarchical clustering (Clauset et al., 

2004) are shown. It can be found that only three spatial communities can be identified roughly. The 

example with GPS trajectories in Beijing will be discussed in the conference presentation. And the 

statistical significance of the identified networks will show in the figure of the Beijing experiment result. 

                           

(a) Ten simulated spatial communities                                            (b) Candidate road segments 

                             
  

(c) Communities detected by the proposed method                        (d) Communities detected by modularity 

Figure 1. Experimental results on simulated dataset 

The proposed method was also applied to detect spatial communities from the taxi GPS trajectory 

data for 1 day in Beijing, China. The discovered spatial communities clearly reveal the polycentric 

structure of the city, and will be useful for planning an efficient spatial configuration for the city.  
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5. Conclusion 

In this study, a spatial scanning method based on ant colony optimization is developed for 

detecting statistically significant spatial communities with arbitrary shapes. By using the road 

segments as the basic units to represent the paths of vehicles, the network-constraint of the vehicles 

can be considered and the aggregation problem can be minified. The constructed spatial scan statistic 

for weighted spatially embedded graph can assess the spatial communities quantitatively and 

meaningfully. The ant colony optimization-based spatial scanning method can not only detect 

arbitrarily shaped spatial communities, but also evaluate the statistical significance of each discovered 

spatial community. Experimental results show that the proposed method is more effective for 

detecting spatial communities in vehicle movements.  
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