Improving NeSI researchers' productivity with a consultancy service

Chris Scott Alex Pletzer Wolfgang Hayek Georgina Rae

New Zealand eScience Infrastructure (NeSI)

6 September 2019

Outline

1 NeSI Consultancy service

2 Some recent projects

NeSI Consultancy service

New Zealand eScience Infrastructure Growth and development of future capabilities

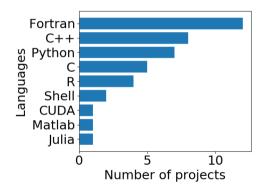
What is NeSI Consultancy?

Introduction

- Goals of NeSI's Consultancy service
 - Enable increased scale and complexity of research
 - Help researchers use NeSI's computing capabilities to increase research outputs and impacts
- How we achieve this
 - Working on projects with researchers; typically 1 day per week for 3-4 months
 - The scope of projects we work on is very broad and covers topics such as:
 - Code optimisation and/or parallelisation
 - Workflows
 - Improving software sustainability
 - Porting code to NeSI's platforms
 - Custom code development
 - Visualisation

Consultancy projects

Applying for a project



- Usually researchers who meet the following criteria can access consultancy at no cost to themselves, based on their institution's or MBIE's investment into NeSI:
 - Researchers with Merit or postgrad projects
 - Researchers based at collaborator institutions
 - University of Auckland
 - NIWA
 - University of Otago
 - Manaaki Whenua Landcare Research
- Others may be able to pay to access the service
- Application form
 - Usually filled out after an initial meeting
 - Defines the current state of the problem
 - Defines the scope of the work

New Zealand eScience Infrastructure

Languages

- The programming languages that we have worked with
- Some projects had more than one language
- Fortran, C++/C still dominate
- Python and R are popular too
- We started work on our first project with Julia recently

Some recent projects

New Zealand eScience Infrastructure Growth and development of future capabilities

Getting closer to more accurate climate predictions for New Zealand

Researchers:

Erik Behrens & Jonny Williams National Institute of Water & Atmospheric Research (NIWA)

"The NZESM is a community project. With this upgrade we have an exciting tool with which to study the climate."

NeSI delivered:

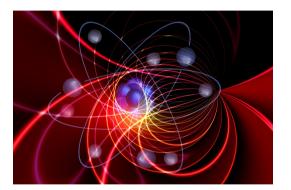
- High performance computing resources
- Computational science expertise

Code development

NZESM project

- Multiple models that need to be coupled together (atmosphere, ocean, ...)
- Using a tool called OASIS for coupling these models together
- We added a new feature to OASIS to enable an ocean coupling scheme for coupling a high resolution regional ocean component
- Important step to setting up customised earth, ocean and weather system modelling for New Zealand

Understanding the behaviours of light


Researchers:

Victor Canela & Jacob Ngaha University of Auckland

"We are running close to a hundred jobs at the same time and each job has separate parameters...**NeSI was able to supply a** script that keeps track of this automatically.

NeSI delivered:

- High performance computing resources
- Computational science expertise
- Code optimisation, automation, improved workflow

Cascade trajectories project

- Infrastructure
 - Added a CMake build system
 - Easy to port to different systems
 - Easy to try different compilers Cray compiler 40% faster
 - Adding tests
- Optimisation
 - Optimised performance of serial Fortran code
 - 22 % boost
- Workflows
 - Instead of running one long calculation they can run many shorter calculations
 - Created Python/Slurm scripts to enable this parallel workflow and give a big boost in performance

Fractal analysis of brain signals for autism spectrum disorder

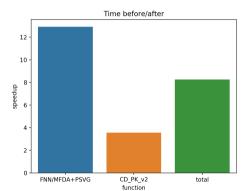
Researcher:

Stephen Wolfson Department of Psychology, University of Auckland

"**NeSI's participation in our project is essential**... It's really only possible to do these calculations on large data sets using a cluster computer."

NeSI delivered:

- Computing resources
- Assistance with optimising script to increase computational speed



New Zealand eScience Infrastructure

Fractal analysis project

Code optimisation

- Matlab code
- Identified two functions with big loops that were performance bottlenecks
- Converted these functions to C++ and call from Matlab – mex'ing
- Total speedup of 8x from converting these functions
- Other outcomes
 - Taught the researcher how to use git version control
 - Importance of testing adding a checksum to easily check result

Trinity project - overview

Workflows and runtime tuning

- Genomics code de novo assembly
- Complex workflow consisting of two distinct computational phases
 - Initial phase is multithreaded with high memory requirements (100s GB)
 - Second phase has many millions of short, serial embarrassingly parallel jobs with low memory requirements (≈ 5 GB)
- By default Trinity runs everything at once within a single high memory node – not optimal

Trinity project - solution

Workflows and runtime tuning

- HPCGridRunner launch embarrassingly parallel jobs on a compute grid (cluster)
 - Accumulated I/O bandwidth of many nodes gives much better performance

Туре	Num cores	Elapsed time (hh:mm:ss)	Core hours
Single node	16	24:09:36	387
Grid	20	07:59:58	168
Grid	40	04:10:45	171
Grid	60	02:36:58	160

"The NeSI consultancy service has drastically improved my workflow by reducing RNA de novo assembly time from 7 days to 24 hours!" – Alexis Marshall, University of Waikato

Summary

New Zealand eScience Infrastructure Growth and development of future capabilities

Summary

- NeSI has a consultancy service
- Work on a wide range of projects (code optimisation, runtime tuning, ...)
- We are always looking for new projects get in touch if you are interested
 - support@nesi.org.nz

https://www.nesi.org.nz/services/consultancy