
New Zealand eScience Infrastructure

New Zealand eScience Infrastructure

Scripting at the Speed of
Compiled Code

Alexander Pletzer, Wolfgang Hayek and Chris Scott
Science Coding Conference, Christchurch 2019

5 September
alexander.pletzer@nesi.org.nz

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

• The problem
• The solution
• How well the solution works in practice

Overview

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

• Python, R, Julia, Matlab are examples of popular scripting
languages used on NeSI platforms

• No need to compile (or compilation happens under the hood)

• Generally more portable than compiled code (C, C++ or
Fortran)

• Faster turn around between development and deployment

• Easier to learn than C, C++ or Fortran

Everyone loves scripting

We’ll focus here on Python…

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

• It’s possible to approach compiled code performance but
you’ll have to work hard

• Avoid loops in scripting languages

• Same instruction executed many, many times

• Each instruction needs to be parsed, interpreted,
checked at runtime (slow)

• Compiled languages shift the above overhead from run to
compile time

• Some optimisations (loop fusion, unrolling, …) are only
available in C/C++, Fortran

But performance sometimes sucks

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

import numpy

n = 100000000 # 100 million

a = numpy.arange(0, n)

s = 0

for i in range(n):

 s += a[i]

print(’sum is {}’.format(s))

Example: add elements of array in Python

real 0m21.589s
1x

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

import numpy, functools, operator

n = 100000000

a = numpy.arange(0, n)

s = functools.reduce(operator.add, a)

print('sum is {}'.format(s))

Solution 1: Use functools.reduce

real 0m10.180s
2x faster

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

import numpy, functools, operator

n = 100000000

a = numpy.arange(0, n)

s = numpy.sum(a)

print('sum is {}'.format(s))

Solution 2: Use numpy.sum

real 0m0.576s
20x

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

• You don’t need to know C/C++ or Fortran to accelerate your
code

• But it helps if you know numpy well

Two words of wisdom

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

• numba

• Add decorator to Python code then C code will be
generated automatically

• Cython

• Write code in a Python-like dialect

• Writing a C extension

• Expose C code to Python via ctypes, SWIG, BoostPython,
….

If numpy vectorization is not enough then
consider:

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

Incident wave

Case study: scattering of waves from an object

Incident wave

https://nesi.github.io/perf-training/python-scatter

https://nesi.github.io/perf-training/python-scatter

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

Getting more bang for your buck

Vectorisation 7-8x

numba 16-17x

C extension 20-30x

Best speedup: 110x

Serial world Parallel world

From 1 to 100x

C + OpenMP 8 threads

Pure Python

New Zealand eScience Infrastructure FooterNew Zealand eScience Infrastructure

• Some projects known to have benefited from the above

Summary

Hidden Markov Chains (R)

Sibson nearest neighbor
interpolation (Python)

100x with refactoring +
vectorisation +
multiprocessing

Diagnosing autism from ECG signals (MATLAB): 8x with mex’ing

New Zealand eScience Infrastructure 02/22/2014New Zealand eScience Infrastructure

Talk to Chris, Wolfgang or me if you need help.
More info about consultancies at
https://www.nesi.org.nz/services/consultancy

Chris Scott: Improving NeSI’s researchers’
productivity with a consultancy service (Fri
11:00)

Thank you.

https://www.nesi.org.nz/services/consultancy

