

Building a Visual Analytics System for Spatio-temporal Analysis

Alan Tan, Yue Lin, Ralf Gommers 5th Sep 2019

Problem

- Many real-world data is of spatio-temporal natured
- Fundamentally challenging to explore and discover data relationships in complex spatio-temporal datasets
- Permanent Sample Plot (PSP) Database
 - Database capturing field measurements from tree plots geographically distributed across New Zealand
 - More than 100 years of field measurements with over 100 measured and derived variat '----'

Existing tools

- Fit for purpose or data tools
 - STempo¹
 - Groundwater Spatio-temporal Data Analysis Tool²

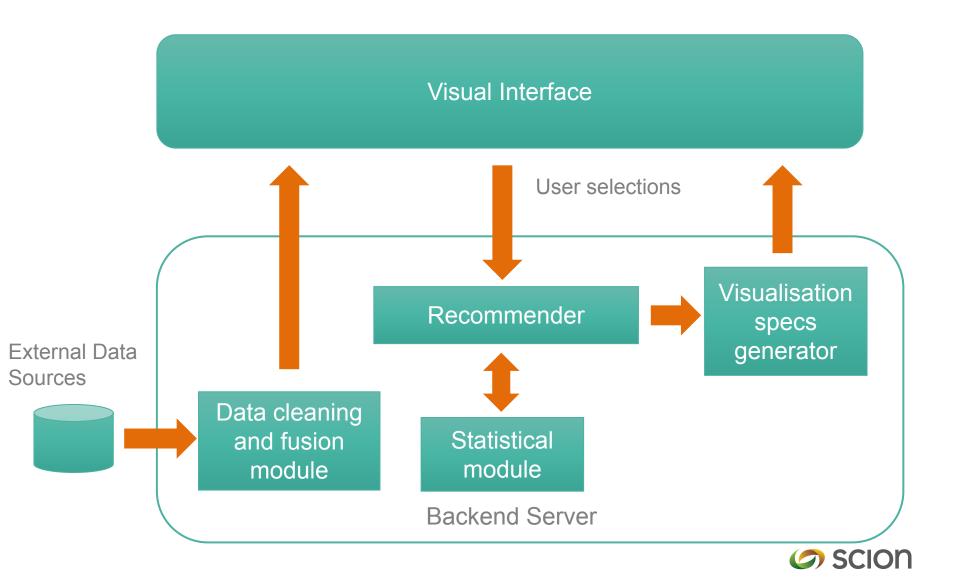
[1] A. C. Robinson, D. J. Peuquet, S. Pezanowski, F. A. Hardisty, and B. Swedberg, "Design and evaluation of a geovisual analytics system for uncovering patterns in spatio-temporal event data," *Cartography and Geographic Information Science*, vol. 44, no. 3, pp. 216-228, 2017/05/04 2017

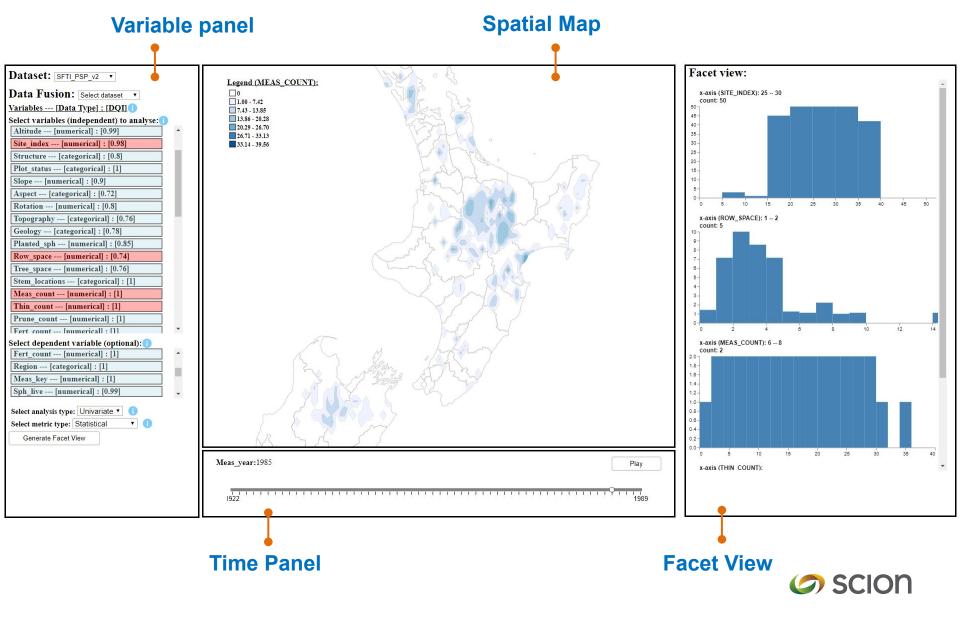
[2] W.R. Jones, M. Bonte, K. Cady, "The Groundwater Spatiotemporal Data Analysis Tool for Groundwater Quality Analyses", CL:AIRE technical bulletin, July 2019

[3] Wongsuphasawat, K., Moritz, D., Anand, A., Mackinlay, J., Howe, B., Heer J., "Voyager: Exploratory Analysis via Faceted Browsing of Visualisation Recommendations. IEEE Transactions on Visualisation and Computing Graphics 22,1, doi: 10.1109/TVCG.2015.2467191

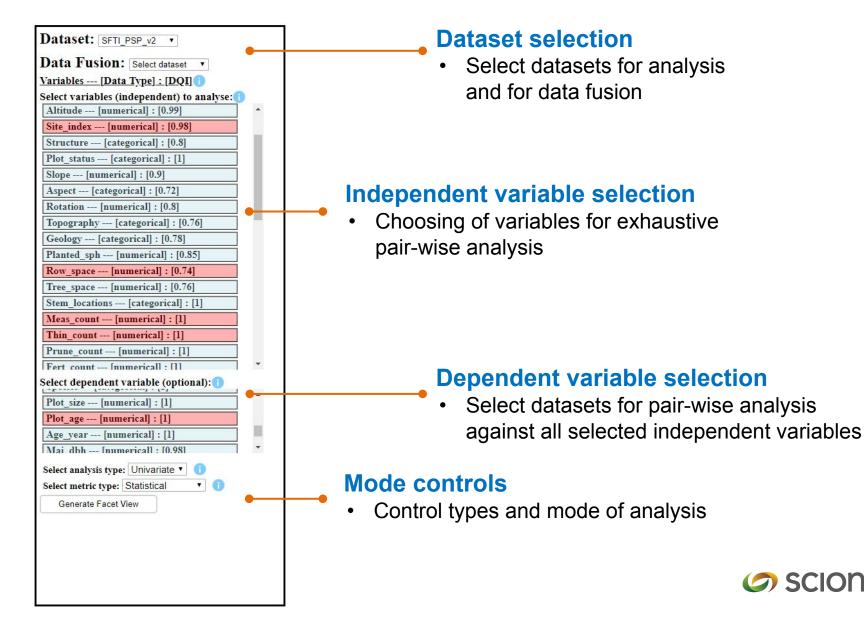
Goals

- Robust tool that allows user to explore different facets of a complex spatio-temporal dataset
 - Different facets (i.e. statistical, spatial, temporal, spatio-temporal)
 - Large dimensionality (e.g. PSP > 100 dimensions/variables)
 - Historically rich datasets (i.e. dynamic temporal patterns)
- Ease-of-use and Interactive




Challenges

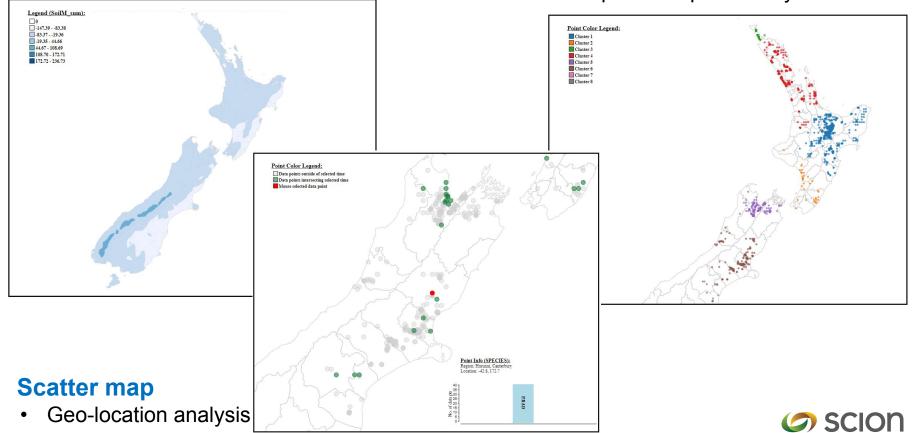
- Presentation of information
 - Different data types
 - Different information spatial, temporal, spatio-temporal patterns
- Allowing users to dynamically focus on different aspects of the dataset
 - Variables
 - Types of analysis
- Interactive capabilities and data linkage
- Data computation
- Allowing users to quickly identify or discover patterns or data relationships that are of interest


Visual Recommender Architecture

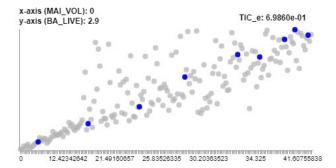
Visual Recommender User Interface

Variable Panel

Spatial Map


Different modes of spatial visualisation

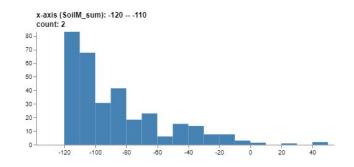
Heatmap

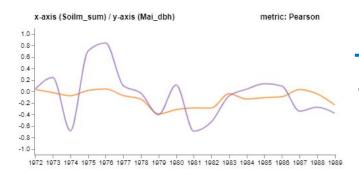

• Numerical analysis

Spatial cluster map

• Spatio-temporal analysis

Facet View



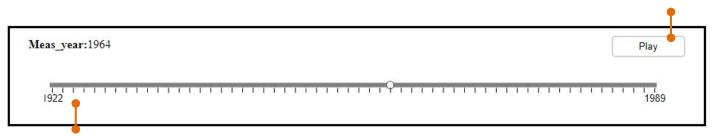

Scatter plots

- Categorical data analysis
- Exploring data relationships

Histograms

• Visualising data distribution

Time-series plot


• Temporal pattern analysis

Time Panel

'Play' button

automatic traversal across temporal dimension

Time slider

- Select time points along the temporal dimension
- Interactive analysis with the spatial map and facet view

Allow users to interact and change data represented in both the Facet view and Spatial map along the temporal dimension

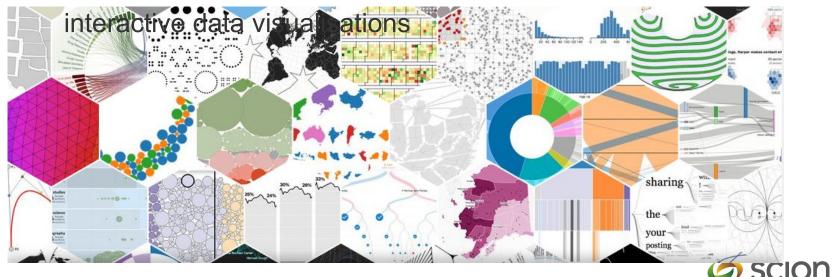
Statistical Frameworks

- Statistical analysis
 - Maximal Information Coefficient (MIC)¹ Linear, non-linear, complex relationship testing

- Spatial analysis
 - Moran's I Spatial autocorrelation analysis

- Spatio-temporal analysis
 - Hierarchical clustering Spatial points clustering (allow adaptive clustering of spatial points)

Pearson — Quick intra-cluster linear relationship testing between
 [1] D. N. Reshef et al., "Detecting Novel Associations in Large Data Sets," Science, vol. 334, no. 6062, pp. 1518-24, Dec no 2011
 [2] Moran, P. A. P. (1950), "Notes on Continuous Stochastic Phenomena." Biometrika, 37(1): 17-23 doi:10.2307/2582 62 JSTOR 2332142


Software Stack

- Python Backend server and data wrangling
- Scipy + other APIs Statistical module
- Scikit-learn Recommender engine
- Vega Visualisation specification generation
- Javascript + D3 Visual interface and data visualisation

Data Visualisation – Vega + D3

- Toolkits for building an interactive and dynamic front-end data visualisation interface
- Both APIs are data-driven:
 - APIs responsible for figuring out what elements to add or remove to the visualisation based on changes in the data
 - Simplifies rendering on front-end, allowing responsive and

D3 – Data Objects

Parses arrays of data into data objects var dataset = [{name: Richard, speakerID: 5}, {name: Wolfgang, speakerID: 2}]

- Manipulates HTML Document Object Model (DOM) instances based on changes in data
 - Enter() Add new DOM elements when it detects new data objects
 - Update() Update properties of existing elements based on changes in values for each object
 - Exit() Remove elements with no corresponding data objects in the dataset

D3 - Selection

Robust control over created elements

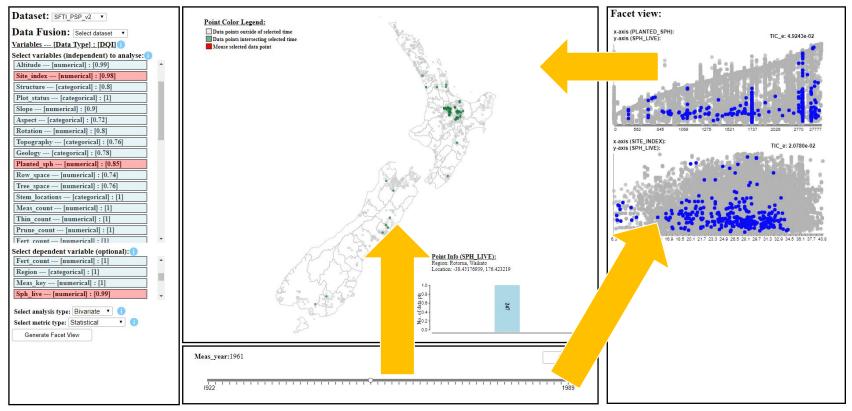
var element = d3.select("#attributes_selector")

element.append("rect") .attr("x", -5) .attr("y", -bb.height+ 8) .attr("width", panel width + 10) .attr("height", bb.height * 1.2) .attr("fill", "lightblue") .attr("fill-opacity", 0.3) .attr("stroke", "black") .attr("stroke-width", 1) .on("click", function() { var this box = d3.select(this);

	Plot_id [categorical] : [1]
	Controller [categorical] : [1]
	Forest [categorical] : [1]
	Altitude [numerical] : [0.99]
	Site_index [numerical] : [0.98]
	Structure [categorical] : [0.8]
	Plot_status [categorical] : [1]
	Slope [numerical] : [0.9]
	Aspect [categorical] : [0.72]
	Rotation [numerical] : [0.8]
	Topography [categorical] : [0.76]
	Geology [categorical] : [0.78]
	Planted_sph [numerical] : [0.85]
	Row_space [numerical] : [0.74]
	Tree_space [numerical] : [0.76]
	Tree_space [numerical] : [0.76]

D3 – Other functions

- Smooth visual transitions and an Colors
 - Transition() timers and dela. Dispatches transitions
 - On() event handlers to read 'click', 'mouseover', 'mouseo
- Whole list of functions to assist data manipulation and construct intuitive visualisations

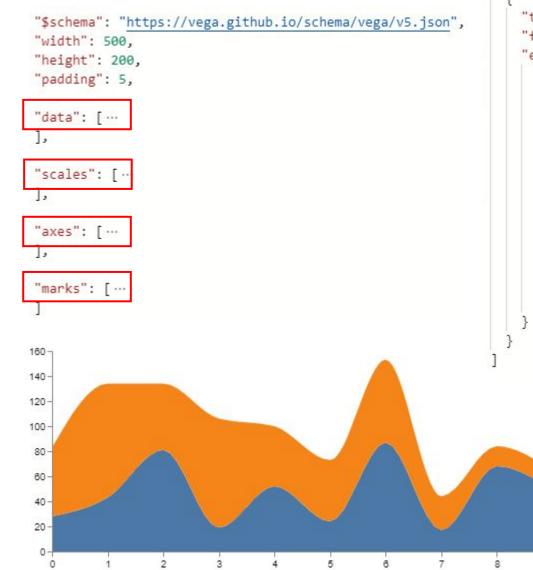

- Arrays (Statistics, Search, Transformations, Histograms)
- Axes
- Brushes
- Chords
- Collections (Objects, Maps, Sets, Nests)
- Color Schemes
- Contours
- - Dragging
 - Delimiter-Separated Values
 - Easings
 - Fetches
 - Forces
 - Number Formats
 - Geographies (Paths, Projections, Spherical Math, Spherical Shapes, Streams, Transforms)
 - Hierarchies
 - Interpolators
 - Paths
 - Polygons
 - Quadtrees
 - Random Numbers
 - Scales (Continuous, Sequential, Diverging, Quantize, Ordinal)
 - Selections (Selecting, Modifying, Data, Events, Control, Local Variables, Namespaces)
 - Shapes (Arcs, Pies, Lines, Areas, Curves, Links, Symbols, Stacks)
 - Time Formats
 - Time Intervals
 - Timers
 - Transitions
 - Voronoi Diagrams
 - Zooming

D3

 Useful for working with visualising and interacting with large amount of data points
 Visualise spatial points for

Visualise spatial points for different variables

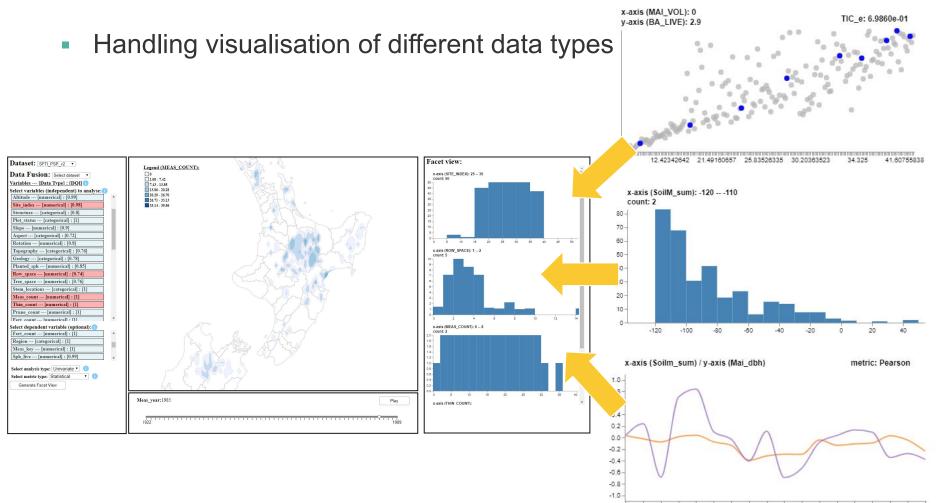
Manipulate visualisation as data to visualise changes across time



Vega

- Built on D3 runtime interpreter for a JSON-based visualisation grammar
- Declarative language to 'describe' visualisations abstracting the implementation
- Promotes reusable visualisation design and interoperability
- Great for generating different facet views of the data
 - By dimension
 - By "category" within a variable (i.e. how does student perform across each class)

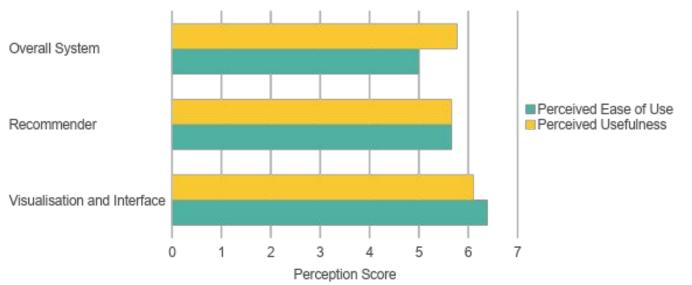
Vega – describing visualisations




```
"marks": [
```

```
"type": "area",
                                              :1},
"from": {"data": "series"},
                                              ·1},
"encode": {
                                               1},
  "enter": {
                                              ·, L},
    "interpolate": {"value": "monotone"},
                                               1},
    "x": {"scale": "x", "field": "x"},
                                               1},
    "y": {"scale": "y", "field": "y0"},
                                              :1},
    "y2": {"scale": "y", "field": "y1"},
                                              :1},
    "fill": {"scale": "color", "field": "c"}
                                              :1},
  },
                                              :1}
  "update": {
    "fillOpacity": {"value": 1}
  },
  "hover": {
    "fillOpacity": {"value": 0.5}
```


Vega



1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989

User study

- 2 user studies conducted across the project duration
 - Perceived usefulness of system
 - Facilitating data exploratory efforts
- Different groups of users
 - Non-data analysts
 - Poverage provide for Each Component of System

SCION

D3 / Vega – Cons

- Steep learning curve
 - Require an awareness of how the data is structured when implementing the visualisation
 - Different kind of thinking how can I generalise my implementation to work with different data
- Vega still lack robust support for spatial data visualisation
 - custom maps
- Toolkits still restricted by resources of browsers
 - Memory, bandwidth
- Data needs to be sent to client-side
 - Challenges with sensitive data

Acknowledgements

- Science for Technological Innovation National Science Challenge program (SfTI).
- Dr Stephen MacDonell, AUT
- Christine Dodunski, Scion PSP administrator

www.scionresearch.com

Prosperity from trees Mai i te ngahere oranga

Scion is the trading name of the New Zealand Forest Research Institute Limited