
LINUXLINUX
AN INTRODUCTION TO THE BASH SHELLAN INTRODUCTION TO THE BASH SHELL

LINUXLINUX
AN INTRODUCTION TO THE BASH SHELLAN INTRODUCTION TO THE BASH SHELL
THE LINUX SHELL IS ALSO KNOWN AS THE COMMAND-LINETHE LINUX SHELL IS ALSO KNOWN AS THE COMMAND-LINE

LINUXLINUX
AN INTRODUCTION TO THE BASH SHELLAN INTRODUCTION TO THE BASH SHELL
THE LINUX SHELL IS ALSO KNOWN AS THE COMMAND-LINETHE LINUX SHELL IS ALSO KNOWN AS THE COMMAND-LINE

(1999)
(2010)
(2019)

in the beginning ... was the command line
a taxonomy of data-science
data science at the command line

http://cristal.inria.fr/~weis/info/commandline.html
http://www.dataists.com/2010/09/a-taxonomy-of-data-science/
https://www.datascienceatthecommandline.com/

From :"A taxonomy of Data Science"

http://www.dataists.com/2010/09/a-taxonomy-of-data-science/

From :"A taxonomy of Data Science"

POINTING AND CLICKING DOES NOT SCALE.POINTING AND CLICKING DOES NOT SCALE.

http://www.dataists.com/2010/09/a-taxonomy-of-data-science/

From :"A taxonomy of Data Science"

POINTING AND CLICKING DOES NOT SCALE.POINTING AND CLICKING DOES NOT SCALE.

Part of the skillset of a data scien�st is
knowing how to obtain a sufficient
corpus of usable data... At a minimum, a
data scien�st should know how to do
this from the command line, e.g., in a
UN*X environment.

http://www.dataists.com/2010/09/a-taxonomy-of-data-science/

From :"A taxonomy of Data Science"

POINTING AND CLICKING DOES NOT SCALE.POINTING AND CLICKING DOES NOT SCALE.

Part of the skillset of a data scien�st is
knowing how to obtain a sufficient
corpus of usable data... At a minimum, a
data scien�st should know how to do
this from the command line, e.g., in a
UN*X environment.

(men�oned) shell-scrip�ng, python/perl,
sed, awk,grep, less, head, cut, ...

http://www.dataists.com/2010/09/a-taxonomy-of-data-science/

From a review of :"Data Science at the Command Line

https://www.datascienceatthecommandline.com/

From a review of :"Data Science at the Command Line

The Unix philosophy of simple tools, each doing one
job well, then cleverly piped together, is embodied by
the command line. Jeroen expertly discusses how to
bring that philosophy into your work in data science,
illustra�ng how the command line is not only the world
of file input/output, but also the world of data
manipula�on, explora�on, and even modeling.

https://www.datascienceatthecommandline.com/

From a review of :

Chris H. Wiggins,Chris H. Wiggins,
Associate Professor, Dept of Applied Physics andAssociate Professor, Dept of Applied Physics and
Applied Mathema�cs, Columbia University, Applied Mathema�cs, Columbia University,
Chief Data Scien�st, Chief Data Scien�st, The New York TimesThe New York Times

"Data Science at the Command Line

The Unix philosophy of simple tools, each doing one
job well, then cleverly piped together, is embodied by
the command line. Jeroen expertly discusses how to
bring that philosophy into your work in data science,
illustra�ng how the command line is not only the world
of file input/output, but also the world of data
manipula�on, explora�on, and even modeling.

https://www.datascienceatthecommandline.com/

USER INTERFACESUSER INTERFACES
There are two ways we usually interact with a
computer running the Linux opera�ng system:

USER INTERFACESUSER INTERFACES
There are two ways we usually interact with a
computer running the Linux opera�ng system:

1. COMMAND-LINE INTERFACE (CLI OR SHELL)COMMAND-LINE INTERFACE (CLI OR SHELL)

USER INTERFACESUSER INTERFACES
There are two ways we usually interact with a
computer running the Linux opera�ng system:

1. COMMAND-LINE INTERFACE (CLI OR SHELL)COMMAND-LINE INTERFACE (CLI OR SHELL)

Thompson shell (1971)

USER INTERFACESUSER INTERFACES
There are two ways we usually interact with a
computer running the Linux opera�ng system:

1. COMMAND-LINE INTERFACE (CLI OR SHELL)COMMAND-LINE INTERFACE (CLI OR SHELL)

Thompson shell (1971)
Bourne shell (1977)

USER INTERFACESUSER INTERFACES
There are two ways we usually interact with a
computer running the Linux opera�ng system:

1. COMMAND-LINE INTERFACE (CLI OR SHELL)COMMAND-LINE INTERFACE (CLI OR SHELL)

Thompson shell (1971)
Bourne shell (1977)
bash shell, "the Bourne-again shell" (1989)

USER INTERFACESUSER INTERFACES
There are two ways we usually interact with a
computer running the Linux opera�ng system:

1. COMMAND-LINE INTERFACE (CLI OR SHELL)COMMAND-LINE INTERFACE (CLI OR SHELL)

Thompson shell (1971)
Bourne shell (1977)
bash shell, "the Bourne-again shell" (1989)
and a lot of others

https://en.wikipedia.org/wiki/Comparison_of_command_shells

USER INTERFACESUSER INTERFACES
There are two ways we usually interact with a
computer running the Linux opera�ng system:

1. COMMAND-LINE INTERFACE (CLI OR SHELL)COMMAND-LINE INTERFACE (CLI OR SHELL)

Thompson shell (1971)
Bourne shell (1977)
bash shell, "the Bourne-again shell" (1989)
and

2. GRAPHICAL USER INTERFACE (GUI)GRAPHICAL USER INTERFACE (GUI)

1987

a lot of others

https://en.wikipedia.org/wiki/Comparison_of_command_shells

THE SHELLTHE SHELL

The shell is your text interface with the linux kernel. It
provides

THE SHELLTHE SHELL

The shell is your text interface with the linux kernel. It
provides

interac�ve use

THE SHELLTHE SHELL

The shell is your text interface with the linux kernel. It
provides

interac�ve use
customiza�on of your linux session

THE SHELLTHE SHELL

The shell is your text interface with the linux kernel. It
provides

interac�ve use
customiza�on of your linux session
programming constructs - shell commands used
to create scripts

THE SHELLTHE SHELL

The shell is your text interface with the linux kernel. It
provides

interac�ve use
customiza�on of your linux session
programming constructs - shell commands used
to create scripts

The default shell on many linux distribu�ons andThe default shell on many linux distribu�ons and
MacOS is the MacOS is the bashbash shell. shell.
The The also provides the also provides the
bash shell.bash shell.

Windows Subsystem for LinuxWindows Subsystem for Linux

https://docs.microsoft.com/en-us/windows/wsl/install-win10

THE TERMINALTHE TERMINAL
You need a terminal window open to access the shell.

Try "Ctrl-Alt-t" in linux or MacOS.
In that window, you are "at the command-line", or "at
the shell".

We'll be spending all our �me at the shell.

THE SHELL PROMPTTHE SHELL PROMPT

The bash shell prompt is typically

If you see that prompt, type what follows at the
command-line on your terminal.
Then press enter.

 $

THE SHELL PROMPTTHE SHELL PROMPT

The bash shell prompt is typically

If you see that prompt, type what follows at the
command-line on your terminal.
Then press enter.

 $

 $ ls

THE SHELL PROMPTTHE SHELL PROMPT

The bash shell prompt is typically

If you see that prompt, type what follows at the
command-line on your terminal.
Then press enter.

The character "#" denotes the beginning of a comment
- don't type it or what follows.

 $

 $ ls

THE SHELL PROMPTTHE SHELL PROMPT

The bash shell prompt is typically

If you see that prompt, type what follows at the
command-line on your terminal.
Then press enter.

The character "#" denotes the beginning of a comment
- don't type it or what follows.

 $

 $ ls

 $ pwd # print present working directory

THE SHELL PROMPT, CONTINUED:THE SHELL PROMPT, CONTINUED:

THE SHELL PROMPT, CONTINUED:THE SHELL PROMPT, CONTINUED:

The superuser prompt is
 #

THE SHELL - INTERACTIVE USETHE SHELL - INTERACTIVE USE

$ whoami # whoever you logged in as
$ w # who's logged on, what are they doing?
$ cd # move to home directory
$ pwd # show full path of present working directory
$ ls # list files in the current directory.
$ history # display shell history
$ top # display all running processes

SHELL COMMANDS WITH OPTIONS AND ARGUMENTS, AND PIPESSHELL COMMANDS WITH OPTIONS AND ARGUMENTS, AND PIPES

Op�ons start with "-", arguments come last.
A pipe "|" takes the output of the previous
command as input to the next command.

$ id # 1) print your user/group information
$ top -u $USER # 2) show all jobs you are currently running
$ ps ux # 3) another way of seeing your running jobs
$ ls /var/log # 4) list files in the directory /var/log
$ ls -lt /var/log/*.log # 5) list ".log" files in the given directory
$ history 20 # 6) display last 20 entries in shell history
$ history| tail -n 10 # 7) from the output of the history command,
 # show the last 10 lines
$ history| head -n 4 # 8) from the output of the history command,
 # show the first 4 lines
$ man command-of-interest # 9) help on "command-of-interest"

BASIC NAVIGATIONBASIC NAVIGATION

MOVING AROUNDMOVING AROUND

Paths contain "/".
Absolute paths start with "/".

$ cd # 1) change directory to "home"
$ mkdir temp_dir # 2) make directory (folder)
$ mkdir temp_dir/a/b # 3) make folder b within new folder a (fails)
$ mkdir -p temp_dir/a/b # 4) make folder b within new folder a (succeeds)
$ man mkdir # 5) how does that command work?
$ cd temp_dir/a/b # 6) change directory
$ pwd # 7) print present working directory
$ cd .. # 8) navigate up one directory
$ pwd; ls # 9) where are we? / what's here?
$ cd - #10) return to previous directory
$ cd ../../.. #11) navigate up three directories
$ ls -lRt temp_dir #12) list all files recursively from temp_dir
$ cd /tmp #13) move to /tmp directory (temporary storage)

BASIC FILE-HANDLINGBASIC FILE-HANDLING

WORKING WITH FILESWORKING WITH FILES

$ cd # 1) move to home directory
$ nano data_file # 2) write content into file

Enter the lines:

first row

second row

third row

fourth row

third row

Write out with Crtl-O, Ctrl-X.

$ cp data_file data_file_$(date +%F)
 # 3) make a copy of data_file, appendi
$ ls # 4) see if it worked
$ wc -c data_file # 5) character count of that file
$ wc -w !$ # 5) word-count of that file
$ wc -l !$ # 6) line-count of that file

SHELL UTILITIESSHELL UTILITIES

UTILITIES, INPUT, OUTPUT, PIPESUTILITIES, INPUT, OUTPUT, PIPES

You can use the output of commands as input of other
commands through Unix pipes(|):

$ cat data_file|sort > data_file2 # 1) sort lines and write to another fi
$ cat data_file2 # 2) see result
$ cat data_file|sort | uniq # 3) only show unique lines of file
$ cat data_file|sort | uniq -d # 4) only show duplicate lines of file

HELPHELP
There are two types of shell u�li�es

1) shell buil�ns
basic tools documented with the command "help":

 $ help # see them all
 $ jobs # all jobs running in this shell
 $ help jobs
 ctrl-z # put current foreground job in background
 $ fg %1 # resume suspended job #1 in the foreground

2) external shell commands (programs built from built
ins)

documented in the manual pages:

$ ls /usr/bin # see many of them
$ whereis python # where are all the available python executabl
$ which python # where is my python executable?
$ whatis python # one-line description from man-page
$ man python # full man-page for help on python

THE MANUAL IS YOUR FRIENDTHE MANUAL IS YOUR FRIEND
when you know what you're looking for
... AND SO IS "APROPOS"... AND SO IS "APROPOS"

when you don't

$ man apropos
apropos - search the manual page names and descriptions

DESCRIPTION
 Each manual page has a short description available within it.
 apropos searches the descriptions for instances of keyword.

Use apropos to find the command you need.

$ apropos permissions

THE SHELL - CUSTOMIZING YOUR LINUX ENVIRONMENTTHE SHELL - CUSTOMIZING YOUR LINUX ENVIRONMENT
The shell by default sets the values of many variables.The shell by default sets the values of many variables.
Their names are always upper-case. Their names are always upper-case.
Their values are accessed by pu�ng a $ in front.Their values are accessed by pu�ng a $ in front.

$ env # see your environment variables
$ set # local and environment variables
$ cd # same as "cd $HOME"
$ echo $USER # same as "whoami"
$ echo $PATH # where your system looks for your commands *
$ cat .bashrc # where you can configure your shell (linux)
$ cat .bash_profile # where you can configure your shell (macOS)

The history command tells you what commands you've
issued in the past:

$ history | tail -5 # for the last 5 commands used

The history command tells you what commands you've
issued in the past:

Configure the history command with:

$ history | tail -5 # for the last 5 commands used

$ export HISTTIMEFORMAT="%F %T "

The history command tells you what commands you've
issued in the past:

Configure the history command with:

then do some stuff ..., and check your history again

$ history | tail -5 # for the last 5 commands used

$ export HISTTIMEFORMAT="%F %T "

$ history| tail -5

The history command tells you what commands you've
issued in the past:

Configure the history command with:

then do some stuff ..., and check your history again

You get a �mestamp associated with each command.
Very handy!

$ history | tail -5 # for the last 5 commands used

$ export HISTTIMEFORMAT="%F %T "

$ history| tail -5

The format for history you will then see is:

$ history |tail -5
2019-07-09 16:24:06: env
2019-07-09 16:24:11: set
2019-07-09 16:24:18: set|grep USER
2019-07-09 16:24:23: vi index.html
2019-07-09 16:25:02: history 10

ASIDEASIDE
To make this configura�on permanent, add the
command

to your bash configura�on file
~/.bashrc (linux)
~/.bash_profile (MacOS) , and source that file to

ac�vate the se�ng:

$ export HISTTIMEFORMAT="%F %T "

$ source ~/.bashrc #or source ~/.bash_profile

ASIDE CONTINUEDASIDE CONTINUED
The se�ngs in this configura�on file are applied to
every terminal shell you open. Add more se�ngs as
you like.

Many u�li�es/programs you install have their own
configura�on files. They are usually hidden in your
home-directory - they start with a dot, and aren't
listed by default. To see them:

$ ls -lat # everything
$ ls -lat .* #just hidden (dot) files

THE SHELL - PROGRAMMING WITH SHELL SCRIPTSTHE SHELL - PROGRAMMING WITH SHELL SCRIPTS
store convenient executable func�ons in ~/bin
~/bin is in your PATH
executable files stored in your path can be run by
just typing their name.

$ chmod u+x filename.sh # make it executable
$ filename.sh # run it if on your $PATH
$./filename.sh # if not on your $PATH

SHELL SCRIPT EXAMPLESHELL SCRIPT EXAMPLE

Enter the lines:

$ nano make_some_files.sh

 #!/bin/bash

for dir_number in `seq 1 10`;

do mkdir dir_$dir_number;

 for file_number in `seq 1 20`;

 do

 touch dir_$dir_number/file_${file_number}_$(date +%F);

 done;

done;

$ ls # 1) before
$ chmod u+x make_some_files.sh # 2) make it executable
$./make_some_files.sh # 3) execute it
$ ls -Rt # 4) see what's changed

ENOUGH!!ENOUGH!!
THANK YOU.THANK YOU.

2019 SOFTWARE CARPENTRY2019 SOFTWARE CARPENTRY
In mid-August, University of Auckland will be
hos�ng another event.
You're encouraged to a�end
the perfect opportunity to increase
your so�ware skills
A�endance is free, but you must enrol.

So�ware Carprentry

https://uoa-eresearch.github.io/2019-08-12-uoa-swc/

