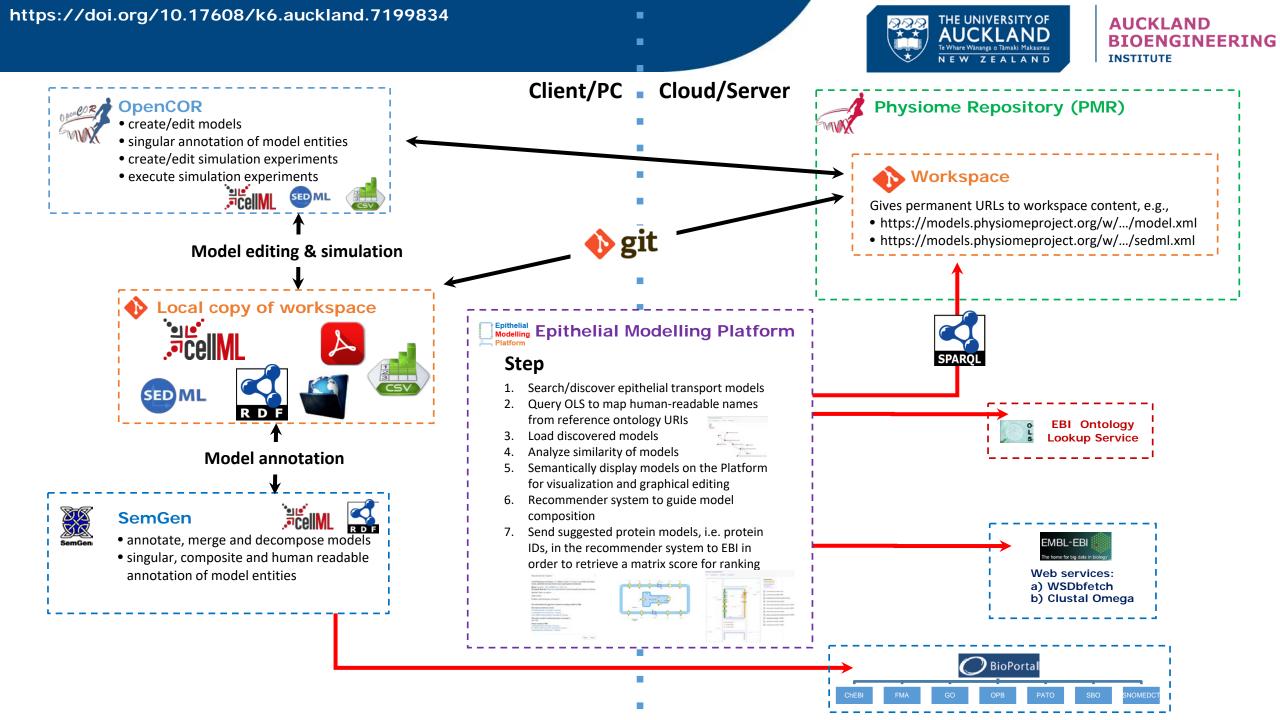
Semantics-based model discovery (and assembly) for renal transport

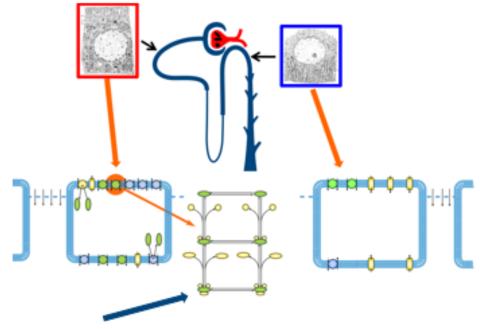
Dewan Sarwar, Reza Kalbasi, Koray Atalag, David Nickerson Auckland Bioengineering Institute University of Auckland, New Zealand

https://doi.org/10.17608/k6.auckland.7199834



Motivation

- Given a collection of mechanisms and/or observations, e.g.,
 - electrophysiology measurements
 - imaging data
 - diseases (SNOMED-CT, ICD, Human Disease Ontology...)
 - drug actions
 - clinical observations (openEHR archetypes)
 - etc...
- can we extract a model from the Physiome Model Repository suitable for testing clinical or experimental hypotheses?


https://doi.org/10.17608/k6.auckland.7199834 Kidney Model Annotation

AUCKLAND BIOENGINEERING INSTITUTE

- Comprehensive descriptions of the underlying anatomical connectivity across multiple renal scales are being mapped to the biologicallymeaningful variables in each of the model.
- UniProt identifiers, FMA terms, variables biological meaning, species used, etc.

Α	В	C	
del workspace	CellML document	model entity	description
einstein 1995			
s://models.physiomeproject.org/w/andre/weinstein_1995	Weinstein_1995_NHE3.cellml	model=weinstein_1995	A kinetically defined Na+/H+ Antiporter within a Mathematical
		Na+/H+ antiporter (NHE3)	NHE3 exchanger/antiporter; NHE3 is a protein - UniProt ID: P.
ngen-annotation / weinstein_1995-semgen.cellml		Compartments	Three compartments: lumen, cytosol, cell membrane
		Background	Located in Proximal convoluted tubule, Apical plasma membra
			Appears to be a key mediator of perfusion-absorption balance
			Recognized as a family of transport proteins, with the proxima
Xar 10	Variable URIs relative to above workspace URL.		Gene has been cloned and sequenced (Tse et al, 1991) and tl
	Weinstein_1995_NHE3.cellml#v035	component=NHE3 / variable=J_NHE3_Na	Flux of Na+ transmembrane solute through Na+/H+ antiporter
K _{nas}	Weinstein_1995_NHE3.cellml#v036	component=NHE3 / variable=J_NHE3_H	Flux of H+ transmembrane solute through Na+/H+ antiporter f
	Weinstein_1995_NHE3.cellml#v037	component=NHE3 / variable=J_NHE3_NH4	Flux of NH4+ transmembrane solute through Na+/NH4+ antip
Č.	??? not in the CellML model ???	component=NHE3 / variable=J_NHE3_Na_Max	Maximum Flux of Na+ transmembrane solute through Na+/H+
	Weinstein_1995_NHE3.cellml#v022	component=NHE3 / variable=XTxP_NHE3_Na	Permeation velocity of Na+ from extracellular (lumen) to intrac
Keata Kit Kobia Kit	Weinstein_1995_NHE3.cellml#v023	component=NHE3 / variable=XTxP_NHE3_H	Permeation velocity of H+ from intracellular (cytosol) to extrac
	Weinstein_1995_NHE3.cellml#v024	component=NHE3 / variable=XTxP_NHE3_NH4	Permeation velocity of NH4+ from intracellular (cytosol) to ext
	Weinstein_1995_NHE3.cellml#v028	component=NHE3 / variable=alpha_ext_Na	Normalized concentration ratio of Na+ in the etracellular (lume
Physics Physics	Weinstein_1995_NHE3.cellml#v031	component=NHE3 / variable=alpha_int_Na	Normalized concentration ratio of Na+ in the intracellular (cyto
Kar (w) + Xat (w)	Weinstein_1995_NHE3.cellml#v029	component=NHE3 / variable=beta_ext_H	Normalized concentration ratio of H+ in the etracellular (lumer
	Weinstein_1995_NHE3.cellml#v032	component=NHE3 / variable=beta_int_H	Normalized concentration ratio of H+ in the intracellular (cytos
	Weinstein_1995_NHE3.cellml#v030	component=NHE3 / variable=gamma_ext_NH4	Normalized concentration ratio of NH4+ in the etracellular (lun
	Weinstein 1995 NHE3.cellml#v033	component=NHE3 / variable=gamma_int_NH4	Normalized concentration ratio of NH4+ in the intracellular (cy
	Weinstein_1995_NHE3.cellml#v034	component=NHE3 / variable=sum_NHE3	Permeation velocity in the NHE3 protein model
	Weinstein 1995 NHE3.cellml#v001	component=concentrations / variable=C_ext_Na	Concentration of Na+ in the extracellular (lumen) compartmen
	Weinstein 1995 NHE3.cellml#v002	component=concentrations / variable=C ext H	Concentration of H+ in the extracellular (lumen) compartment
	Weinstein_1995_NHE3.cellml#v003	component=concentrations / variable=C_ext_NH4	Concentration of NH4+ in the extracellular (lumen) compartme
	Weinstein 1995 NHE3.cellml#v004	component=concentrations / variable=C int Na	Concentration of Na+ in the intracellular (cytosol) compartmer
	Weinstein 1995 NHE3.cellml#v005	component=concentrations / variable=C int H	Concentration of H+ in the intracellular (cytosol) compartment
	Weinstein 1995 NHE3.cellml#v006	component=concentrations / variable=C int NH4	Concentration of NH4+ in the intracellular (cytosol) compartme
	Weinstein 1995 NHE3.cellml#v007	component=concentrations / variable=time	Time (??? Time dimension ???)
	Weinstein 1995 NHE3.cellml#v008	component=NHE3 Parameters / variable=XTxP0 NHE3 Na	Permeation velocity constant of Na+ from extracellular (lumen
	Weinstein 1995 NHE3.cellml#v009	component=NHE3 Parameters / variable=XTxP0 NHE3 H	Permeation velocity constant of H+ from intracellular (cytosol)
	Weinstein 1995 NHE3.cellml#v010	component=NHE3 Parameters / variable=XTxP0 NHE3 NH4	Permeation velocity constant of NH4+ from intracellular (cytosou)
	Weinstein 1995 NHE3.cellml#v011	component=NHE3 Parameters / variable=K NHE3 Na	Equilibrium binding contstant of Na+ in the NHE3 protein model
	Weinstein 1995 NHE3.cellml#v012	component=NHE3 Parameters / variable=K NHE3 H	Equilibrium binding contstant of H+ in the NHE3 protein model
	Weinstein 1995 NHE3.cellml#v013	component=NHE3 Parameters / variable=K NHE3 NH4	Equilibrium binding contstant of NH4+ in the NHE3 protein model

Renal SGLT1 model

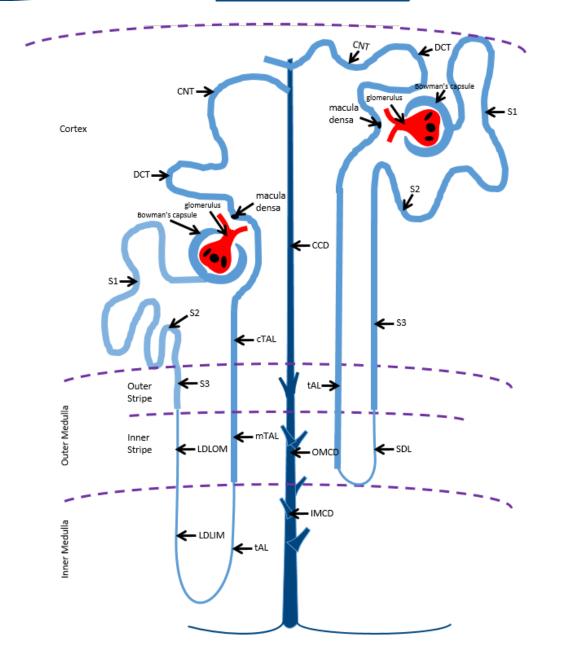
men) compartment through the cell m

Protein: Sodium/glucose cotransporter 1 (SGLT1) JniProt ID: P11170 Gene: SLC5A1

Species: Oryctolagus cuniculus (Rabbit) Located in:

- Proximal convoluted tubule (FMA:17693)
- Apical plasma membrane (FMA:84666)
- Epithelial cell of proximal tubule (FMA:70973)
- Proximal straight tubule (FMA:17716)

Example source of knowledge


National Heart Lung and Blood Institute

Epithelial Systems Biology Laboratory (ESBL)

RNA-seq I dentification of Transcripts Expressed along the Renal Tubule

- NHE3: S1, S2, SDL, LDLOM, tAL, mTAL, cTAL, DCT
- SGLT1: cTAL
- **TSC**: S1, S2, cTAL, DCT
- SGLT2: Not exist

SemGen Annotator Interface

AUCKLAND BIOENGINEERING INSTITUTE

Illustrative example of SemGen annotator interface of the Weinstein model where codewords identifies CellML variables and annotates flux of sodium from luminal compartment to cytosol compartment through sodium/hydrogen exchanger 3.

<u></u>	::Sem Gen:: – 🗆 🗙				
File Tools Help					
weinstein_1995-semgen 🗙					
📱 🔹 🗋 Show imports Sort Options	💌 🚥 🞵 Reference Terms: 🏦 🏠 🏦 😌 😉				
Curational Metadata Full Name Description Keywords Annotator Name Annotator Contact Model Author Model Contact Source Model ID CallMI LIPI Codewords (39) P+X _ F • NHE3_Parameters.K_NHE3_H P+X _ F • NHE3_Parameters.K_NHE3_NA P+X _ F • NHE3_Parameters.K_NHE3_NA P+X _ F • NHE3_Parameters.K_NHE3_NA P+X _ F • NHE3_Sum_NHE3 P+X _ F • NHE3_J_NHE3_H P+X _ F • NHE3_J_NHE3_H	NHE3.J_NHE3_Na (nmol_per_s_per_cm2) Flux of Na+ transmembrane solute through Na+/H+ antiporter from extracellular (lumen) to intracellular (cytosol) compartment J_NHE3_Na = XTXP_NHE3_Na*XTXP_NHE3_H/sum_NHE3*(elpha_ext_Na*beta_int_H-alpha_int_Na*beta_ext_H)+XTxP_NHE3_Na*XTxP_NHE3 J_NHE3*(elpha_ext_Na*gamma_int_NH4-alpha_int_Na*gamma_ext_NH4) Composite annotation Chemical concentration flow rate (OPB) Image: Luminal Source: Luminal Sink: Portion of cytosol Mediator: sodium/hydrogen exchanger 3 Singular annotation *unspecified*				
P+X _ F • NHE3.J_NHE3_NH4 P+X _ F • NHE3.XTxP0_NHE3_H P+X _ F • NHE3.XTxP0_NHE3_Na P+X _ F • NHE3.XTxP_0_NHE3_NH4 P+X _ F • NHE3.XTxP_NHE3_H P+X _ F • NHE3.XTxP_NHE3_Na D_Y • • NHE3_VTVD_NHE3_Na D_Y • • NHE3_VTVD_NHE3_Na Concentrations - environment - NHE3 - NHE3_Parameters	<pre></pre> <pre><</pre>				

Epithelial Modelling Platform

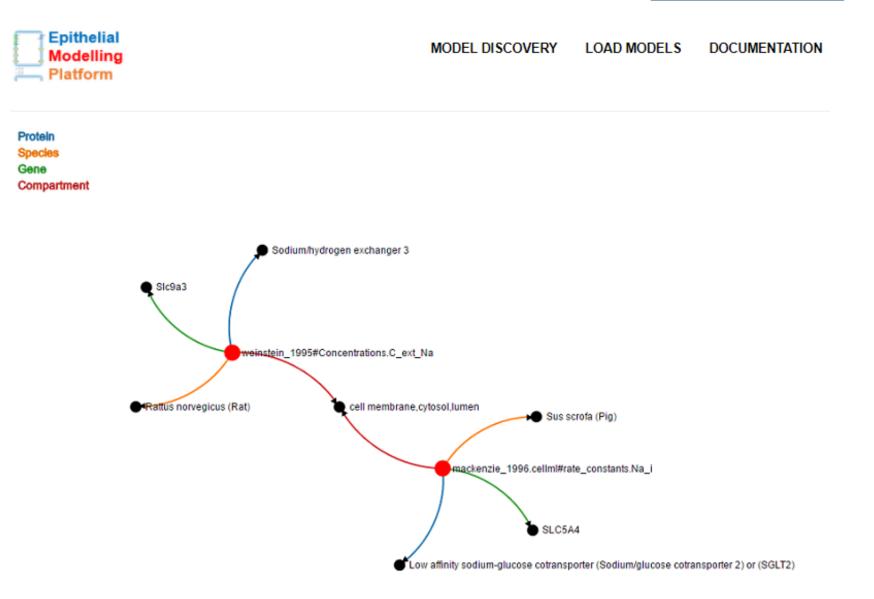
AUCKLAND BIOENGINEERING INSTITUTE

View Model Add to Model Columns -

Model_entity	Biological_meaning	Species	Gene	Protein
chang_fujita_b_1999.cellml#solute_concentrations.J_sc_Na	Flux of Na+ through Na-K-ATPase from cytosol compartment to tissue fluid compartment across basolateral cell membrane	Homo sapiens	SLC5A1	sodium/glucose cotransporter 1
chang_fujita_b_1999.cellml#ms_sodium_flux.G_ms_Na	Flux of Na+ through Na diffusive channel from luminal compartment to tissue fluid compartment across paracellular pathway	Homo sapiens	SLC5A1	sodium/glucose cotransporter 1
chang_fujita_b_1999.cellml#mc_sodium_flux.J_mc_Na	Flux of Na+ through Na-Cl cotransporter from luminal compartment to cytosol compartment across apical cell membrane	Homo sapiens	SLC5A1	sodium/glucose cotransporter 1
chang_fujita_b_1999.cellml#mc_sodium_flux.G_mc_Na	Flux of Na+ through Na channel from luminal compartment to cytosol compartment across apical cell membrane	Homo sapiens	SLC5A1	sodium/glucose cotransporter 1
mackenzie_1996.cellml#NBC_current.J_Na	Flux of Na+ from luminal to cytosol and cytosol to luminal compartment through apical plasma membrane	Mus musculus	Slc5a4a	low affinity sodium- glucose cotransporter
weinstein_1995.cellml#NHE3.J_NHE3_Na	Flux of Na+ from luminal to cytosol through apical plasma membrane	Rattus norvegicus	Slc9a3	sodium/hydrogen exchanger 3

Epithelial Modelling Platform

AUCKLAND BIOENGINEERING INSTITUTE



MODEL DISCOVERY LOAD MODELS DOCUMENTATION

View	Delete	visualization	Epithelial Platform	Columns -					
Mo	odel_entit	y			Protein	Species	Gene	Compartment	Located_in
🗆 cha	ang_fujita	_b_1999.celln	nl#solute_concentra	ations.J_mc_Na	a sodium/glucose cotransporter 1	Homo sapiens	SLC5A1	Apical plasma membrane, Basolateral plasma membrane, Portion of cytosol, Portion of tissue fluid, Luminal	Distal convoluted tubule
we	einstein_1	995.cellml#NH	IE3.J_NHE3_Na		sodium/hydrogen exchanger 3	Rattus norvegicus	Slc9a3	Luminal, Apical plasma membrane, Portion of cytosol	Epithelial cell of proximal tubule, Apical plasma membrane, Proximal convoluted tubule
🗆 ma	ackenzie_	1996-mouse-k	paso.cellml#NBC_c	urrent.J_Na	low affinity sodium-glucose cotransporter	Mus musculus	Slc5a4a	Apical plasma membrane, Portion of cytosol, Luminal	Epithelial cell of proximal tubule, Basolateral plasma membrane, Proximal convoluted tubule, Proximal straight tubule

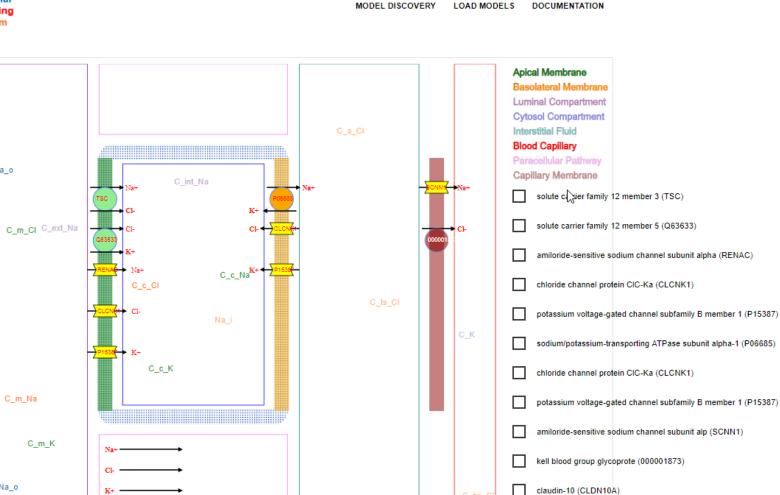
Epithelial Modelling Platform

Epithelial Modelling Platform

AUCKLAND BIOENGINEERING INSTITUTE

Recommender System ×	
sodium/hydrogen exchanger 3 is a Kidney model. It is located in proximal convoluted tubule, epithelial cell of proximal tubule, apical plasma membrane.	
Model: weinstein_1995.cellml#NHE3.J_NHE3_Na Biological Meaning: Flux of Na+ from luminal to cytosol through apical plasma membrane	
Species: Rattus norvegicus	
Gene: Slc9a3	
Protein: sodium/hydrogen exchanger 3	
Recommendations/suggestions based on existing models in PMR	
Basolateral membrane model sodium/hydrogen exchanger 3 (human) low affinity sodium-glucose cotransporter (mouse) sodium/potassium-transporting ATPase subunit alpha-1 (rat)	
Alternative model of sodium/hydrogen exchanger 3 Not Exist	
Kidney model in PMR sodium/hydrogen exchanger 3 (human) low affinity sodium-glucose cotransporter (mouse) sodium/glucose cotransporter 1 (human)	Identity Matrix: # # # Percent Identity Matrix - created by Clustal2.1 #
Close Save	<pre># 1: sp Q9ET37 S5A4A_MOUSE 100.00 22.86 17.86 21.86 2: sp P48764 SL9A3_HUMAN 22.86 100.00 19.15 89.49 3: sp P06685 AT1A1_RAT 17.86 19.15 100.00 18.20 4: sp P26433 SL9A3_RAT 21.86 89.49 18.20 100.00</pre>

Epithelial Modelling Platform



AUCKLAND BIOENGINEERING INSTITUTE

Na_o

Na_o

C_s_Na

C_ts_Na

C_s_K

П

П

C_bc_Na

claudin-4 (CPETR1)

kelch-like protein 3 (F1LZ52)

Current status

- Model discovery demonstration: <u>https://github.com/dewancse/model-discovery-tool</u>
- Epithelial modelling platform: <u>https://github.com/dewancse/epithelial-modelling-platform</u>
- Implementing model composition service
- Extending model similarity to simulation experiment similarity to automate model "verification"
- Future work: language processing to translate user requirements into semantic queries.

AUCKLAND BIOENGINEERING INSTITUTE

Acknowledgements

- Tommy Yu @ ABI
- John Gennari, Max Neal, Graham Kim @ University of Washington
- Brian Carlson @ University of Michigan

Aotearoa Foundation

